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A major barrier to the wider use of supervised learning in emerging applications, such

as genomic selection, is the lack of sufficient and representative labeled data to train

prediction models. The amount and quality of labeled training data in many applications

is usually limited and therefore careful selection of the training examples to be labeled

can be useful for improving the accuracies in predictive learning tasks. In this paper, we

present an R package, TrainSel, which provides flexible, efficient, and easy-to-use tools

that can be used for the selection of training populations (STP). We illustrate its use,

performance, and potentials in four different supervised learning applications within and

outside of the plant breeding area.

Keywords: training optimization, machine learning, genomic selection, genomic prediction, image classification,

multi-objective optimization, mixed models

1. INTRODUCTION

Genomic selection (GS) uses supervised learning for predicting genetic values of phenotyped and
un-phenotyped individuals by using genomewide molecular markers (Meuwissen et al., 2001).
Genomic prediction (GP) models are built using a training data, i.e., genomic and phenotypic data
for a set of individuals. Unfortunately, phenotyping of plants is an expensive and time-consuming
process due to factors such as reliance on human input and budget time and resource constraints.
Therefore, the most important current bottleneck in application of GS in plant breeding programs
is phenotyping. Selection of training populations (STP) in this context refers to identification of a
set of training individuals to be phenotyped.

While the usefulness of optimal training set (TRS) in GS is clearly supported by the literature
(Rincent et al., 2012; Akdemir et al., 2015; Isidro et al., 2015; Lorenz and Smith, 2015; He et al.,
2016; Cericola et al., 2017; Neyhart et al., 2017; Norman et al., 2018; Akdemir and Isidro-Sánchez,
2019; Guo et al., 2019; Mangin et al., 2019; de BemOliveira et al., 2020; Olatoye et al., 2020; Yu et al.,
2020; Kadam et al., 2021), the flexible and efficient software tools for implementing them have been
limited. Indeed, only a few software tools such as STPGA (Akdemir, 2017) and TSDFGS (Ou and
Liao, 2019) are available for public use. The TSDFGS is an R package that focuses on optimization of
the TRS by a genetic algorithm (GA) and can be used for STP based on three built-in design criteria.
Similarly, STPGA is an R package that uses a modified GA for solving subset selection problems
but also allows users to chose from many predefined or user-defined criteria. Here, we designed a
TrainSel package that provides many more options, for example, the ability to select multiple sets
frommultiple candidate sets, specification of whether or not the resulting set needs to be ordered, or
the power to perform multi-objective optimization. In addition, TrainSel can be used for searching
for solutions to variety of TRS and experimental design problems, such as randomized complete
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block design, lattice design, etc. TrainSel uses GA in conjunction
with simulated annealing (SA) steps, and functions are written
in C++ using Rcpp (Eddelbuettel et al., 2011), and therefore,
improves performance and is more efficient compared to both
of the above alternatives.

In addition, the TrainSel package was designed to be applied
not just for genomic assisted breeding situations, it can also
be utilized for STP in general supervised learning problems.
Supervised learning refers to the exercise of building predictive
models that allow us to predict the states of certain output
variables (referred as labels) based on certain input variables.
To build supervised learning models we make use of a training
dataset that includes observations of both the input variables
and the labels, and generally, the larger and more representative
the training dataset, the greater is the statistical power for
supervised learning. We use the term label throughout this
article to refer to the output variables that we are trying to
predict. In genomic selection, labeling a genotype refers to
measurement of phenotypic values for that genotype in one or
more environments.

In this paper, we demonstrated the usage of the TrainSel
R package for STP on genomic assisted breeding applications,
but also included other applications to illustrate that STP may
also be worthwhile for other supervised learning tasks, such as
image classification.

2. MATERIALS AND METHODS

2.1. Populations for Selection of Training
Population (STP)
During STP, we will encounter different types of populations.
The target population (Akdemir and Isidro-Sánchez, 2019) is the
population that the researcher is interested in, i.e., the population
we want to make inferences about. The study population is the
population that is accessible to the researcher. The candidate
set (CS) is a countably finite representative subset of the study
population, similarly, the test set (TS) is a countably finite
representative subset of the target population. We assume that
we either have an idea about the topology (referring to the initial
data available on CS and TS before doing the experiment) of the
union of the CS and TS, or that it is relatively easy to obtain this
information. Finally, the initial information about the topology
of the CS and TS is used to identify a subset of the CS as
the training set (TRS) for measuring the labels and additional
features. These populations and the default supervised learning
paradigm is illustrated in Figure 1.

2.2. Optimization Algorithm in TrainSel
Selection of training population involves the selection of a
subset from a set of candidates and therefore is a combinatorial
problem. These problems are typically exponential in terms of
computational complexity and may require exploring all possible
solutions. Nevertheless, many modern publications point to the
effectiveness of applying metaheuristics in obtaining “good”
answers to combinatorial optimization problems.

TrainSel uses a combination of GA (Holland, 1992) and
simulated annealing (SA) algorithm (Haines, 1987) for solving

combinatorial optimization problems. Genetic algorithm uses
techniques inspired by natural evolution such as inheritance,
mutation, selection, and crossover to generate better solutions
through iterations (Holland, 1992). Simulated annealing moves
between solutions using a perturbation and acceptance scheme.
At each iteration, a new solution is generated by perturbing the
current solution, and this new solution is accepted if it improves
the optimization criterion. If the perturbed solution is inferior
to the current solution the new solution is accepted based on
an acceptance probability that is inversely proportional to the
distance of the new solution to the current solution and the
current temperature of the system (Haines, 1987). Temperature
parameter varies during the iterations of the SA algorithm
and usually is a decreasing function of the iteration number.
Acceptance of inferior solutions during the SA iterations allows
the algorithm to explore more of the possible space of solutions.

Algorithms such as GA and SA outperform other traditional
methods in many applications, as they are flexible and easy
to implement (no mathematical analysis is needed when
considering a large, complex, non-smooth, poorly-understood
optimization problem). There is no proof of convergence for
either GA or SA, however, they are effective on a large range of
classic optimization problems, andmore specifically, have proved
to be effective for approximating globally optimal solutions
to many combinatorial optimization problems (Glover and
Kochenberger, 2006; Fischetti and Lodi, 2010).

Algorithm 1 describes the main steps of the sample selection
algorithm for the single optimization criteria problems. A
similar algorithm is used when optimizing more than one
criteria. The main difference is that the elite solutions of a
population are defined as the non-dominated solutions of the
current population.

The parameters of the selection algorithm in TrainSel are:
“npop” which is the size of the genetic algorithm population,
“nelite” which is the number of elite solutions selected in
each iteration, “niterations” which is the maximum number
of iterations for the genetic algorithm, “miniterbefstop” is
the minimum number of iterations of “no change” before
the algorithm is deemed converged, “tolconv” which is the
tolerance for determining “no change” in the criteria values,
“niterSANN” which is the number of iterations for the SA
algorithm, “stepSANN” which controls the speed of cooling of
the SA algorithm. Each of these parameters comes with default
settings, most of which do not need to be changed by the user
for small to medium-sized optimization problems. For larger
problems increasing “niterations” and “niterbefstop” parameters
will usually suffice. We have done some experimentation with
the default settings of the remaining parameters (and with
relatively large values for “niterations” and “minitbefstop”)
algorithm in several problems with different complexities where
the true solution was known. The results from these convergence
experiments are provided in Supplementary Figure 1. The user
can use these figures to guess initial estimates for these two
parameters for their problems. After the run of the algorithm,
the best way to decide if the algorithm has worked is by
checking the flattening of the objective function values during the
final iterations.
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FIGURE 1 | Populations in STP and their use. The study population is the population that is accessible to the researcher. The candidate set (CS) is a countably finite

representative subset of the SP, similarly, the test set (TS) is a countably finite representative subset of the target population. The initial information about the topology

of the CS and TS (X0
Candidate

and X0
Candidate

) is used to identify a subset of the CS as the training set (TRS) for measuring the labels (phenotypic values in GS) (YTrain) and

other related features (XTrain) (for instance, environmental covariates). The training data for TRS is used to build supervised learning models which are then used to

make inferences and predictions.

Algorithm 1 : Combinatorial optimization algorithm in TrainSel

1: t = 0.
2: Initialization—Create an initial population of solutions of

desired size, St . Parameters: npop
3: repeat

4: t = t + 1.
5: St = ∅.
6: Selection—Identify the best solutions in St−1 by the

ordering of criterion values. Let the best solutions be st .
Parameters: nelite

7: SA—Improve elements of st with simulated annealing
algorithm. Parameters: niterSANN, stepSANN

8: Elitism—Put st in St ,
9: repeat

10: Crossover—Randomly pick two solutions in St .
Obtain a recombination of these two solutions.

11: Mutation—Mutate the solution from the above
step with a certain mutation probability and intensity.
Parameters: mutprob, mutintensity

12: Insert this solution into St .
13: until St has Npop solutions.
14: until Convergence: the achievement of the maximum

number of iterations or non-improvement for a
prescribed number of iterations. Parameters: niterations,
miniterbefstop, tolconv return Best Solution.

In most applications of STP, the ordering of selected samples
in the TRS will not be important and therefore only one instance
of each individual is required for TRS sample; we refer to this
case as an unordered set (UOS). In certain cases, the order of
the sample will be important but again only one instance of
each individual is required, we refer to this case as ordered set
(OS). The cases where we allow more than one instance of each
individual is referred to as unordered multiset (UOMS) and
ordered multiset (OMS). TrainSel allows users to specify which
of these types of sets the optimization problem falls into. An

application of the use of finding optimal ordered sets is the design
of a blocked experiment where we care about the design of the
experiment, i.e., the assignment of individuals to different blocks,
in addition to selecting which individuals to include in the study.

The search algorithm in TrainSel is not guaranteed to find
globally optimal solutions, i.e., the solutions obtained by any
run of TrainSel may be sub-optimal, and different solutions can
be obtained given different starting conditions and optimization
parameters. Another layer of safety can be obtained if the
algorithm is started from multiple initial conditions, and the best
of all the runs is selected as the final solution.

Numerous other algorithms have been proposed for the
optimal subset selection problem, many of them are heuristic
exchange type algorithms (Fedorov, 1972;Mitchell, 1974; Nguyen
and Miller, 1992; Rincent et al., 2012; Isidro et al., 2015). In
exchange type algorithms, new solutions are obtained by adding
a sample unit and removing another at a time (some exchange
algorithms might allow the exchange of more than one samples
at once), these algorithms are greedy and are only proven to find
the best subset for a certain type of design criteria.

2.3. Design Criteria
Selection of training populations is an optimal experimental
design problem, and the work on the optimal experimental
designs has a long and rich history (Smith, 1918; Kiefer,
1959; Fisher, 1960; Fedorov, 1972; Atkinson and Donev, 1992;
Pukelsheim and Rosenberger, 1993; Fedorov and Hackl, 2012;
Silvey, 2013) and it is not a surprise that many different design
criteria have been proposed. These criteria can be categorized
into three major groups:

• Parametric design criteria which assume that the experimenter
has specified a model before the training data is obtained.
These criteria depend on a scalar function of the information
matrix for the model parameters that give some indication
about the sampling variances and covariances of the estimated
quantities by themodel. The estimated quantitymight be some
function of the model parameters or predictions from the
model for target individuals. There are many designs obtained
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by optimizing such criteria are referred to asA−,D−, E−,G−,
etc. . . optimal designs (Kiefer et al., 1985). Bayesian design
criteria use priors on the parameters of the models to evaluate
the utility of designs.

• Nonparametric designs include criteria that are based on
distance or similarity measures. For example, the maximin-
distance design is a space-filling design that chooses a training
population such that the minimum distance among the TRS
is maximized (Johnson et al., 1990). Another such design
is the minimax design (Johnson et al., 1990) where the
training population is such that themaximumof theminimum
distances from the training population to the rest of the
CS or the TS is minimized. Space-filling designs aim to
cover the experimental region with as few gaps or holes
as possible. Unlike the parametric design criteria, minimax
distance presumes no underlying model and, in turn, is
suitable for situations where the model is unknown.

• Multiple design. The choice of an appropriate criterion
requires knowledge about themodel and what is required from
the model. Multiple model optimal experimental design and
compound optimization criteria try to overcome the choice
issue by combining more than one criteria into one via some
type of averaging. Alternatively, we can compare different
designs using more than one criteria based on the dominance
concept and use multi-objective optimization methods to
decide on a certain design from out a set of Pareto optimal
designs (Markowitz, 1952, 1968; Akdemir and Sánchez, 2016;
Akdemir et al., 2019).

TrainSel allows users to use optimization criteria by letting them
write their optimization functions and therefore can be used to
search designs based on all of the above categories. Given the
multitude of design criteria, this flexibility is one key advantage
of TrainSel to its alternatives such as STPGA or TSDFGS.

2.3.1. Built in Criterion: CDmin

The STP involves the selection of TS from CS using optimization
criteria. TrainSel is supplemented with a predefined design
criterion CDmin which is related to the CDmean criteria in Laloë
(1993), Laloë and Phocas (2003), Rincent et al. (2012). The main
reason for implementing this design criterion as the only built-in
design criterion is due to our specific interest in applying TrainSel
to the design of single and multi-environmental GP experiments.

The built-in criterion CDmin depends on the linear mixed
models. The linear mixed-effects model for a n-dimensional
response variable y, n × p design matrix of fixed effects, n × q
design matrix of random effects is defined as:

y = Xβ + Zu+ ε;

where ε ∼ Nn(0,R) is independent of u ∼ Nq(0;G), β ∈ R
p,

G is a q × q covariance matrix and R is a n × n covariance
matrix. The assumptions of the linear mixed-effects model imply
E(y|X;Z) = Xβ , y ∼ Nn(Xβ;ZGZ′ + R) = Nn(Xβ;V) with
V defined as V = ZGZ′ + R. For this model, the coefficient
of determination matrix (Laloë, 1993; Laloë and Phocas, 2003;
Rincent et al., 2012) of û for predicting u is given by

(GZ′PZG)⊘ G

where P = V−1 − V−1X(X′V−1X)−1X′V−1 and ⊘ expresses
the elementwise division. The minimum of the selected diagonal
elements of this matrix is called the CDmin. The minimum of
the coefficient of determination takes on values between 0 and
1, and the designs that give higher values for this criterion are
preferred to designs with lower values. The CDmin criterion
follows the maximin decision rule, maximizing this criterion
amounts to maximizing the utility for the worst case scenario,
and it is suitable for making risk averse decisions.

Most authors use the mean of the selected diagonal elements
of this matrix as the criterion, this is called the CDmean
criterion. We have used CDmin instead of CDmean for several
reasons. Firstly, the distribution of CD values along the diagonal
for a given G matrix includes both the training samples and
the remaining samples. The CD values that correspond to the
training samples, as expected, form a different cluster (high
values of CD) than the cluster of CD values corresponding to the
samples that are not selected (low values of CD) and therefore we
have a bimodal distribution for the CD values. Secondly, if the
aim is to improve the generalization performance of the resulting
model we prefer to move the lower part of this distribution to the
right, i.e., the maximin decision amounts to improving the worst
case CD value in this distribution which leads to the CDmin
approach. Thirdly, the purpose of this article is not to compare
effect of using different selection criteria but to show that TrainSel
can be easily adopted to many different selection criteria.

Alternatively, we could approach the bimodality by restricting
the mean measure to be calculated only on the set difference
of the CS and the TRS or on a predefined TS. It should be
trivial to apply any of these modifications with TrainSel. We
stress here that the choice among themany different optimization
criteria require thorough analysis, but this is beyond the aims of
this paper.

We use two parameterizations of the above mixed model: In
the first parameterization, we assume thatG = σ 2

k
K and R = σ 2

e I

where σ 2
k
and σ 2

e are the variances of the random terms u and
e correspondingly and K is a relationship matrix of the same
dimension as G. In the second parameterization G = K⊗Vk and
R = I ⊗ Ve where Vk and Ve are covariance matrices that relate
to the effects in u and e using Kronecker structured covariances.

The first model is useful for modeling random effects u related
by a relationship matrix K. The STP for this model involves the
selection of a predefined size set from the levels of the random
term u that also correspond to factor levels in the rows (and
columns) of K for labeling.

The second model is useful for modeling factor levels that
correspond to the rows (and columns) of K in several related
environments. The covariance of these random effects in several
environments is given by Vk and similarly, the covariance of the
residual effects in these environments is given by Ve. In this case,
we want to select predefined sizes of sets from the factor levels
that correspond to the rows (and columns) of K to be labeled in
the corresponding environments.

The purpose of the X matrix in the mixed models above
is to account for fixed effects. If the rows of the X matrix
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corresponding to the conditions in a given environment are
heterogeneous, then, in addition to selecting the levels of the
random effect in the TRS, we would like to arrange the training
sample optimally to the conditions expressed in the rows of X. In
these cases, we are looking to identify a TRS that is an ordered
subset of the CS. If no X matrix is specified or if the rows of X are
homogeneous within environments the order of the assignments
will not matter. In this case, STP involves the selection of an
unordered sample as TRS.

2.4. Datasets and Applications
In this section, we describe the datasets, simulations, and related
analysis. We are testing Trainsel with four applications: The first
application deals with STP for GP of hybrid performance, the
second with a design of multi-environmental GS experiment.
The third application deals with STP for an image recognition
problem. Our final application on splines regression entails
simultaneous selection of design points among a set of
candidates and allocation of knots through the range of the
explanatory variables.

2.5. Application 1: Wheat Data for Hybrid
Performance Prediction
This dataset was published in Liu et al. (2016) and was
used in a similar context in Guo et al. (2019). The genetic
dataset included the marker data (90 k SNP array based on
an Illumina Infinium genotyping platform) for 135 elite winter
wheat individuals adapted to Central Europe. A total of 1,604 F1
hybrids were generated in a factorial crossing scheme with 120
inbred individuals serving as female and 15 inbred individuals
serving as male parents.

All genomic data for the wheat data for hybrid performance
prediction application were obtained from the Dryad
Digital Repository (doi: 10.5061/dryad.461nc). All related
phenotypic data were obtained from the Digital Repository
(doi: 10.5447/IPK/2016/11). Marker information for the hybrids
was deduced from the parental individuals.

All individuals were evaluated in up to six environments.
The adjusted means over environments for each of the 1,604
F1 hybrids for 7 traits (gluten content, kernel hardness, protein
content, SDS volume, starch content, test weight, 1,000-kernel
weight) were treated as the labels for the traits.

After removing the hybrids that came from parents with
partial phenotypic data, we were left with 795 hybrids (full
factorial crosses between 15 males and 53 females with complete
phenotypic data). We have complete phenotypic data for all of
these 795 hybrids in this application. Nevertheless, in practice,
the evaluation of each of the hybrids involves making the
cross between the corresponding parents and evaluating them
in phenotypic trials, which are time-consuming and expensive.
It is, therefore, desirable to reduce the costs involved in the
generation and phenotypic evaluation by using a subset of all
possible hybrids in the experiments and to use the data generated
from these experiments for training genomic prediction models
to make inferences about the phenotypic performance of
untested hybrids.

In this application, we examine STP for hybrid performance
prediction, i.e., we would like to select a prespecified size
subset (50, 75, 100, 200 hybrids) of all possible 795 hybrids
for training and use the phenotypic data from the TRS
to predict the performance of the remaining hybrids. The
TRSs were determined either by TrainSel using the CDmin
criterion or by random sampling (repeated 30 times). The
remaining hybrids were used as the TS where the prediction
accuracies were evaluated using the correlation or the mean
squared error between the predicted genotypic values and the
observed phenotypes.

We only used the additive effects when calculating the CDmin
criterion values through use of an additive relationship calculated
from the marker scores. It is possible to include other effects such
as dominance by supplementing the additive effects matrix with
a dominance relationship matrix.

2.6. Application 2: Wheat Data for
Multi-Environmental GS Experiment
Design
We have obtained this dataset from https://triticeaetoolbox.org/
wheat. The genotypic data included 989 individuals genotyped
for 24,740 markers. All of these individuals had complete
phenotypic data on plant height and stripe rust severity from
three environmental trials. Using this data we have performed
a cross-validation experiment where we explored the potential
of STP for the multi-environmental design of GS experiments.
We varied the number of overlapping individuals between the
environments intending to see the effect on the predictive ability
for the untested individuals.

We start each replication of the experiment by randomly
selecting 240 individuals as the CS and the remaining individuals
as the TS. Given the candidate individuals, we assume would
like to construct an experiment in tree environments each of
which can accommodate a fixed number of individuals (20, 40,
60, 80). To see how the replication affects the maximum CDmin
values we also restrict the total number of individuals in the
whole experiment to multiples of 1.2, 1.5, 2, 2.5, 3 of the number
of individuals in each environment. Note that, restricting the
total number of individuals to a multiple of 1.2 of the number
of individuals allowed in each of the environments correspond to
almost total replication (we did not use a factor of 1 because this
value corresponds to a different type of combinatorial problem),
on the other hand, a multiple of 3 corresponds to no replication,
the intermediate values allow some amount of replication. We
have assumed that the covariance of genotypic values between
all trials pairs were 0.7 and we have assumed that the residuals
were independent within and between trials. Besides, we have
assumed that the heritabilities of both experiments were the
same and equal to 0.5. We repeated this experiment 15 times
and for each replication, we record the maximum CDmin
value obtained and we also check the accuracy of the model
in the TSs by calculating the correlation of the trait values in
the TS and corresponding predictions from models based on
different TRSs.
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2.7. Application 3: MINST Datasets for
Image Recognition
Image classification refers to the task of predicting the kind of
objects in images. To train image classification models we need
labeled images as training data. In this context, the purpose of
STP would be to identify a subset of images to be labeled from
out of a larger set of images.

In this application, we used a standard image classification
data, the MINST fashion dataset, obtained using the
“tf.keras.datasets” module, which consists of 28 × 28 grayscale
images of 70,000 in 10 categories. The original data is split into
two parts, the training set has 60,000 images and the test set has
10,000 images. In both the training and test datasets, the different
classes were equally represented.

We performed the following experiment with this dataset: We
started each replication of the experiment by identifying 1,000
samples at random from the original training set of size 60,000
as candidates. The number of samples from each class in the CS
were arbitrarily set as 500, 450, 400, 350, 300, 250, 200, 150, 100,
and 50 to assure an unbalanced CS.We chose a TRS of 100 or 200
samples out of the CS using TrainSel with the maximin distance
criterion and using the distances among the 794 image features
of samples in the CS. In addition, 100 random samples of sizes
100 and 200 were taken from the same CS as random TRSs. For
each TRS, we recorded the entropy for the class distributions
in the TRSs, the loss, and the accuracy for the predictions in
the TS. We used the same 4-layer convolutional deep neural
network prediction model for all the TRSs, these models were
trained using the Keras R package (Allaire and Chollet, 2018).
This experiment was repeated 50 times.

2.8. Application 4: STP for Splines
Regression
Spline regression is a commonly used regression technique for
modeling nonlinear relationships between a continuous response
and continuous explanatory variables. In this technique the
ranges of the explanatory variables are divided into bins using
points which are called knots and the response is modeled with a
piecewise polynomial with a set of extra constraints (continuity,
continuity of the first derivative, and continuity of the second
derivative) at the knots.

A commonly used form of splines, namely the natural cubic
splines, uses cubic segments. The model for a natural cubic
spline that relates the response y to the input variable x can be
expressed as

y = β0+β1x+β2(x−k1)++β3(x−k2)++. . .+β6(x−kp)++σ 2
ε

where

(x− k)+ =

{
0, if x < k

x− k, if x ≥ k

and k1, k2, . . . , kp are the knot positions that are to be specified
as hyper-parameters. Due to this dependence the model matrix
for this model will be written as X(k). The qubic spline is a linear
model, therefore, the formula for D-optimality criteria for this

model can be expressed as D(k) = |X(k)′X(k)| and its value
depends on the choice of the knots. A “good” design maximizes
the value of this function, i.e., we need to select the design points
and also find the best knots for the selected set of design points.

In this simulation exercise, we show that we can
simultaneously pick a TRS of design points out of a set of
candidates and set the knot positions using TrainSel, i.e., we
want to select a set of x values from a set of given candidates
and find values of k1, k2, . . . , kp that maximizes D(k). Just like
in other supervised learning scenarios, we assume we have no
access to the values of the response apriori, their values will
be observed only in the TRS and these along with the selected
optimal knots will be used to fit the cubic spline model. The
model will be used in the prediction of the response and the
predicted response values in the CS will be compared to the true
value of the response (the function value at x) by calculating
mean squared errors. The results obtained by the optimization
approach will be compared to the same size random sample
of x selected from the CS and with the standard approach that
involves placing knots at equally spaced quantiles of the range of
the x values (Ruppert, 2002) in the CS.

In each replication of the experiment, we started with a
1,000 candidate x values sampled uniformly between 0 and
1. We selected 200 (or 300) x values from these candidate
values and also determine the placement of 15 knots. Following
the benchmark experiments in Ruppert (2002) we generated
our response variables from four different functions (namely
logit, sine, bump, spahat functions). More details on these
functions and the generation of the response values are given
in the Supplementary Material. The mean squared error for the
predictions from the optimized set with optimized knots and
random TRSs with equally spaced quantile knots were compared.
This experiment was replicated 30 times.

3. RESULTS AND DISCUSSION

3.1. Application 1: Wheat Data for Hybrid
Performance Prediction
The results of the application on hybrid performance are
summarized by the boxplots in Figure 2 for two traits. The
results for the remaining five traits were summarized in
Supplementary Figure 2. Preliminary analysis with the wheat
data indicated that the hybrids selected as training bymaximizing
the CDmin criterion, provided more accurate prediction models
for predicting the remaining hybrids as compared to models
based on a random sample of hybrids. The relative efficiency
of the optimized samples depended on the number of hybrids
selected in the TRS, and also on the trait. Nevertheless, there was
a clear optimized trend overall. The relative performance of the
optimized TRS to random samples is minimal when the sample
size were as low as 50, and it peaked for about sample size of
100, this relative efficiency decreased as the sample size increases.
These results indicated that the CDmin criterion was a useful
method for selecting wheat hybrids for predictive performance.
In our opinion, hybrid prediction problems provide a perfect
situation to exploit the STP approaches.
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FIGURE 2 | The correlations and the mean squared errors between the predicted and observed trait values of the hybrids in the test data. There is an advantage in

using optimized training samples for this dataset. The correlations and mean squared errors between the predicted and observed trait values of the hybrids in the test

sets were significantly better for the optimized samples than the correlations and mean squared errors of the predicted and observed for the random samples.

3.2. Application 2: Wheat Data for
Multi-Environmental GS Experiment
Design
When designing a multi-environmental GS experiment, we
would like to allocate individuals in environments so that we
have a representative sample of individuals in each environment
and, at the same time, have genetically similar individuals
across environments. Genomic information is not utilized
when designing experiments using classical methods such as
randomized block design, and therefore, these designs are
expected to perform worse than designs that make use of
genomic information.

The CDmin values of the optimal samples on the first row
of Figure 3 indicate that CDmin values are maximized for
intermediate amount of replication between the experiments.

Since, the square root of the CD relates directly to the expected
accuracy, we can use this information to decide on the size and
amount of replication for a multi-environmental GS experiment.

The second and third rows of Figure 3 showed the attained

accuracy for optimal samples and random samples for plant
height and stripe rust. As we can see the optimal experiments

had better accuracy compared to the random experiments at

all experiment sizes, levels of replication and for both of the

traits. The trends in the observed accuracies for both the random

samples and the optimized samples followed the trends observed

in the CDmin values in the first row of the Figure 3.
These results demonstrated that optimally designed multi-

environmental GS experiments can boost prediction accuracies
as compared to randomized block designs. We note here
that designing multi-environmental experiments with a large
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FIGURE 3 | Optimally designed multi-environmental GS experiments can boost prediction accuracies. In the first row, the CDmin values of the optimal samples show

that the CDmin values are maximized for the intermediate amount of replication between the experiments. The second and third rows of figure show the attained

accuracy for optimal samples and random samples for plant height and stripe rust.

FIGURE 4 | Images selected optimally in the TRS have higher entropy in their label distributions than of the random samples (C) and the generalization performance

of the model measured by both loss (A) and accuracy (B) functions in the test dataset indicate that optimally selected samples yield better models than the ones built

on random samples.
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FIGURE 5 | TrainSel spline application. The logarithm of the mean square errors (y-axis) splines models trained on random samples with knots (10, 15, 20, and 30)

located at equally spaced sample quantiles. Optimal training size (x-axis) and knots were selected by optimizing the D-optimality criterion for the different number of

knots and different sample sizes for a set of functions. At each combination of sample size and the number of knots mean squared errors are lower for the latter

approach. Although, in very few cases random sample performed slightly better than the optimized samples, the general trend is in favor of the optimized approach.

number of candidate individuals can be computationally costly.
A useful strategy in these cases involves reducing the size of
the candidate set to a manageable size by selecting a optimal
subset from the full candidate set using suitable design criterion
and using the reduced candidate set in the design of the multi-
environmental experiment.

3.3. Application 3: MINST Datasets for
Image Recognition
The results of this experiment are summarized in Figure 4.
The TRS identified by TrainSel using the maximin distance
criterion had higher entropy in their label distributions on
average compared to those of random samples for both TRS
sizes (Figure 4). Entropy is a widely usedmeasure for quantifying
inhomogeneity, impurity in machine learning applications. The
predictions from the models trained on the optimal TRS were
on average more accurate and had lower cost as measured by
sparse cross-entropy.

Note that, in this application, we have started each replication
of the experiment with an unbalanced CS. Entropy is a measure
of balance in the label distributions, and entropy of the label
distributions in the TRSs selected at random mirrors the
unbalance in the CS. In addition, optimally selected samples
have higher entropy values meaning that the labels for the
samples were more evenly distributed, and this resulted in
models with better accuracy, i.e., the percentage of correctly
classified examples were higher (Figures 4A–C). In addition, the
lower values of the loss function in the test data for optimal
samples indicated that the estimates of probabilities used for the
classification of observations lead to more confident decisions
with more confident class probability estimates.

3.4. Application 4: STP for Splines
Regression
The results of the splines experiment are summarized in
Figure 5. For all combinations of the number of knots, the
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number of TRS sizes, the optimally designed experiments where
both knot placements and selected samples in the TRS were
decided by optimizing the D-optimality criterion have resulted
in splines models with lower mean squared error values as
compared to the splines models trained on random samples
with knots located at equally spaced sample quantiles. This
was true for all of the four different response surfaces we
have tested.

This example used TrainSel used to optimize a mixed integer
optimization problem. Mixed integer programming finds many
applications in plant breeding, for instance, it can be used in
optimizing sequencing resources (Gonen et al., 2017; Cheng et al.,
2020), estimating parental combinations to balance gains and
inbreeding (Brisbane and Gibson, 1995; Jannink, 2010; Heslot
et al., 2015), or genomic mating (Akdemir and Sánchez, 2016).

4. CONCLUSIONS

TrainSel provides algorithms for the optimization of mixed-
integer problems. It was written with the STP problems in focus.
The main use cases are given below:

1. Identifying a TRS from a larger CS for labeling especially when
per sample cost of labeling is relatively high.

2. Design of experiments based on any user-defined design
criteria or with built-in mixed model-based criteria.

3. Design of single or multi-environmental genomic
prediction/selection experiments where the phenotyping
is the major constraining factor.

4. TrainSel can also be used in other combinatorial optimization
problems. Some examples of such problems include
max clique, independent set, vertex cover, knapsack, set
covering, set partitioning, feature subset selection (for
supervised and unsupervised learning), traveling salesman,
job scheduling problems.

The best feature of TrainSel is where we combine training set
selection with a particular experimental design, and this option
has not been implemented in any other STP software.

Reasons for using this package are as follows:

1. Most of the existing STP or statistical design software (such as
TSDFGS, AlgDesign; Wheeler, 2004) will optimize only a few
built-in optimization criteria. You can use TrainSel easily with
your own design criteria.

2. Existing STP or statistical design software (such as STPGA,
TSDFGS, AlgDesign) will optimize a single criterion at a
time, but TrainSel offers an additional better possibility, i.e.,
we can specify multiple objectives that must be optimized
simultaneously.

3. TrainSel uses a memetic evolutionary algorithm which
in our experiments achieved better convergence than a
simple genetic algorithm which was the basis for STPGA
and TSDFGS.

4. The ability to handle ordered or unordered samples, with or
without replication, along with several numerical variables to

optimize user-defined functions makes this package a flexible
general optimization tool.

We have illustrated with several applications that the benefits of
using TrainSel in STP problems. These applications were mostly
related to GP and GS, however, one of the major claims of this
article is that the same techniques can be used for any supervised
learning problem where labeling samples is the main bottleneck
for obtaining the training data.We have exemplified this with two
applications, one in image classification and another one related
to spline regression.

5. IMPLEMENTATION AND USAGE

TrainSel is implemented in R with most of the code written
in Rcpp. Sample usage is illustrated in the Supplementary
and also in the help files within the package documentation.
The source code and installation details are provided at
https://github.com/TheRocinante-lab/TrainSel.
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