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Abstract Key message: The strong genetic structure observed in Mediter-10

ranean oats affects the predictive ability of genomic prediction as well11

as the performance of training set optimization methods. In this study,12

we investigated the efficiency of genomic prediction and training set optimization in13

a highly structured population of cultivars and landraces of cultivated oat (Avena14

sativa) from the Mediterranean basin, including white (subsp. sativa) and red15

(subsp. byzantina) oats, genotyped using genotype-by-sequencing markers, and16

evaluated for agronomic traits in Southern Spain. For most traits, the predictive17

abilities were moderate to high with little differences between models, except for18

biomass for which Bayes-B showed a substantial gain compared to other models.19

The consistency between the structure of the training population and the popula-20

tion to be predicted was key to the predictive ability of genomic predictions. The21

predictive ability of inter-subspecies predictions was indeed much lower than that22

of intra-subspecies predictions for all traits. Regarding training set optimization,23

the linear mixed model optimization criteria (PEVmean and CDmean) performed24

better than the heuristic approach “partitioning around medoids”, even under high25

population structure. The superiority of CDmean and PEVmean could be explained26

by their ability to adapt the representation of each genetic group according to27

those represented in the population to be predicted. These results represent an28

important step towards the implementation of genomic prediction in oat breeding29

programs and address important issues faced by the genomic prediction community30

regarding population structure and training set optimization.31
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Introduction34

The cultivated oat (Avena sativa L.) is an important and versatile crop that can be35

grown for grain, forage, feed and straw (Welch, 2012). In the last twenty years, the36

oat cultivation area within the Mediterranean region increased with an approximate37

rate of 7,500 Ha per year (FAO., 2017). However, the yields achieved in Northern38

Europe remains much greater than that of the Mediterranean area, as a result of39

the limited adaptation of oats to the environmental conditions of Southern Europe40

(e.g., water availability or temperature). Thus, there is a critical need for selecting41

oat genotypes that are better adapted to the Mediterranean environment by taking42

advantage of the existing diversity in the region: the white (subsp. sativa) and red43

(subsp. byzantina) oats.44

The advent of molecular markers has revolutionized the methodologies for45

selecting individuals in animal and plant breeding programs. Among these new46

methods, genomic prediction (GP) was proposed by Meuwissen et al. (2001) and47

stands today as one of the most promising tool. In its simplest application, a set48

of individuals is evaluated for a given trait and genotyped using single nucleotide49

polymorphisms (SNPs). A statistical model is trained on this data set, referred to50

as the training set (TRS), and is used to predict the breeding value of individuals51

for whom only SNP information is available, referred to as the test set (TS) (Isidro52

et al., 2016). Several methods have been proposed in the literature including53

models making different hypotheses on the distribution of the effects of quantitative54

trait loci (QTL) like GBLUP, BayesA, BayesB or BayesCπ (Meuwissen et al.,55

2001; Habier et al., 2011; Heslot et al., 2012), semi-parametric methods like the56

reproducing kernel Hilbert space (RKHS) (Gianola et al., 2006; Gianola and van57

Kaam, 2008), or tree-based methods like random forests (Breiman, 2001; Chen and58

Ishwaran, 2012).59

One of the most critical steps in GP is the selection of the TRS since it is critical60

to the predictive ability of the models. In the last few years, several studies have61

investigated different approaches to optimize TRSs (Rincent et al., 2012; Hickey62

et al., 2014; Akdemir et al., 2015; Isidro et al., 2015; Lorenz and Smith, 2015;63

Tayeh et al., 2015; Akdemir, 2017; Rincent et al., 2017; Brandariz and Bernardo,64

2018; Norman et al., 2018; Akdemir and Isidro-Sánchez, 2019; Berro et al., 2019;65

Edwards et al., 2019; Guo et al., 2019; Mangin et al., 2019; Ou and Liao, 2019;66

Sarinelli et al., 2019; Alvarenga et al., 2020; Olatoye et al., 2020; Roth et al.,67

2020). Among the optimization criteria, some approaches have been the subject of68

particular consideration including the mean coefficient of determination (CDmean)69

and the mean prediction error variance (PEVmean) initially presented for contrasts70

between individuals (Laloë, 1993; Rincent et al., 2012), or clustering methods71

such as stratified sampling (Isidro et al., 2015; Akdemir and Isidro-Sánchez, 2019;72

Guo et al., 2019) and partitioning around medoids (PAM) (Guo et al., 2019). The73

CDmean, PEVmean and PAM criteria are now routinely used for TRS optimization,74

especially when the TRS size is small (Akdemir and Isidro-Sánchez, 2019). As part75

of the optimization process, the population structure plays a key role as it impacts76
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both the performance of the optimization methods (Isidro et al., 2015) and the77

GP predictive ability.78

In a population stratified into genetics groups, when the same genetic groups are79

found within the TRS and the TS, the differences in means between groups are often80

implicitly taken into account by the model and contribute to the predictive ability81

(Guo et al., 2014; Rio et al., 2019). Conversely, when targeting a group-specific82

TS, training a model on a different group can dramatically limit the predictive83

ability, as shown in dairy and beef cattle (Olson et al., 2012; Chen et al., 2013)84

or maize (Technow et al., 2013; Lehermeier et al., 2014). As proposed by de Roos85

et al. (2009), genetic groups can also be combined into generic muti-group TRSs86

that show a good predictive ability regardless of the target population, as shown87

in dairy cattle (Brøndum et al., 2011; Pryce et al., 2011; Zhou et al., 2013), maize88

(Technow et al., 2013; Rio et al., 2019) or soybean (Duhnen et al., 2017). Several89

models have been proposed that explicitly account for genetic structure such as90

modeling genetic covariances between individuals from different groups by adapting91

multi-trait models (Karoui et al., 2012; Lehermeier et al., 2015).92

The use of genomics in oat breeding is rather limited compared to other cereals93

like maize, wheat or rice, due to the scarcity of available tools. It can be explained94

by the complexity of its allo-hexaploid genome (2n=6x=42) with high content in95

repetitive sequences (Yan et al., 2016). Nevertheless, thanks to the efforts of the96

oat community over the past few years, several genome tools have been developed97

such as the Illumina 6K gene chip (Tinker et al., 2014), genotyping-by-sequencing98

(GBS) (Huang et al., 2014; Bekele et al., 2018), and a consensus map (Chaffin99

et al., 2016). Those tools enabled many genetic studies and breeding applications100

(Esvelt Klos et al., 2016; Tumino et al., 2016; Yan et al., 2016; Bjørnstad et al.,101

2017; Tumino et al., 2017; Carlson et al., 2019; Kebede et al., 2019; Sunstrum102

et al., 2019; Isidro-Sánchez et al., 2020a,b; Yan et al., 2020). More recently, the103

draft of the hexaploid Avena sativa genome sequence: OT3098 v1 - PepsiCo1 and104

the sequence of two diploid oat genomes: Avena Atlantica and Avena Eriantha105

(Maughan et al., 2019) have been released. They will open a new frontier for the106

study of the oat genome and for the development of genomics-assisted breeding.107

A few studies have focused on the application of GP and genomic selection108

(GS) in oat (Asoro et al., 2011, 2013; Bekele et al., 2018; Mellers et al., 2020;109

Haikka et al., 2020a,b). In these studies, the objectives included the comparison of110

GS to traditional phenotypic and marker-assisted selection for β-glucans (Asoro111

et al., 2013), GP of heading date using SNPs and tag-levels haplotype markers112

(Bekele et al., 2018), GP of agronomic traits and Fusarium head blight in an oat113

commercial breeding program (Haikka et al., 2020b,a), and the implementation of114

GP within a winter oat biparental cross (Mellers et al., 2020). These empirical GS115

applications have demonstrated the effective use of GS within breeding populations116

to accelerate oat breeding. Nevertheless, there is a lack of experimental studies117

focusing on the efficiency of GP and TRS optimization in highly structured oat118

populations.119

In this paper, a structured Mediterranean oat population, including both white120

and red oat inbred lines, was evaluated for agronomic traits. The objectives were121

to (i) evaluate the predictive ability of different GP models, (ii) optimize TRSs122

1 https://wheat.pw.usda.gov/GG3/graingenes downloads/oat-ot3098-pepsico
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using different methods, and (iii) evaluate the impact of genetic structure on both123

the GP predictive ability and the performance of optimization methods.124

Materials and Methods125

Genetic material and genotypic data126

Genetic material consists of a collection of 709 cultivated oat (Avena sativa) inbred127

lines, including landraces from the Mediterranean area, provided by the “Centro128

de Recursos Filogenéticos” of the “Instituto Nacional de Investigación y Tecnoloǵıa129

Agraria y Alimentaria” (INIA, Madrid, Spain) and the United States Department130

of Agriculture (Washington, USA), along with cultivars and breeding lines provided131

by different institutions, as presented in Sánchez-Mart́ın et al. (2014) and Canales132

et al. (2021a). All individuals were genotyped using GBS-SNP markers as detailed133

in Canales et al. (2021a). Genotypes were pooled into libraries of 96 genotypes at134

the genomic platform of the McGill University (Canada), following the PstI-MspI135

method (Huang et al., 2014). Each GBS library was sequenced on a single line of a136

HiSeq 2500 at the “Plateforme d’Analyses Génomiques of the Institut de Biologie137

Intégrative et des Systèmes” of the “Université Laval” (Quebec City, Canada). Raw138

FASTQ sequences were processed using the Haplotag pipeline (Tinker et al., 2016).139

After a filtering on the minor allele frequency (> 5%), the heterozygosity rate140

(< 20%) and the percentage of missing values (< 50%), a total of 17,288 bi-allelic141

142 SNP markers corresponding to 12,418 tags were obtained. Ten individuals were also 
143 discarded due to a large heterozygosity rate and/or a large percentage of missing 
144 values, leaving 609 individuals for subsequent analyses. Missing values at SNPs were 
145 then imputed using the multivariate normal expectation maximization algorithm 
146 (Poland and Rife, 2012) implemented in the R package rrBLUP (Endelman, 2011). 
147 The marker dataset is available at Dryad Data (Canales et al., 2021b) and sequence 
148 read data are available from NCBI SRA archive as BioProject ID PRJNA693576 
149 (http://www.ncbi.nlm.nih.gov/bioproject/693576).

150 Structure analysis

151 A structure analysis was performed using the STRUCTURE software (Pritchard 
152 et al., 2000) for a number of genetic groups Q ranging from 2 to 5 and using the 
153 admixture model with correlated allele frequencies between groups (Falush et al., 
154 2003). Each analysis consisted of 10,000 MCMC iterations and a burn-in of 1,000 
155 iterations. Admixture barplots are presented in Fig. 1A for Q = 3 and in Online 
156 Resource Fig. S1 for other values of Q. The population could be separated into 
157 two groups corresponding to the two oat subspecies forming the population (sativa 
158 and byzantina), further referred to as Byzantina and Sativa. As the Sativa group 
159 was mainly structured into two sub-groups, we considered three genetic groups for 
160 further analyses by assigning individuals using their maximal admixture coefficient: 
161 Byzantina (257 lines), Sativa A (243 lines) and Sativa B (199 lines). Global position 
162 system coordinates were available for most individual accessions (Canales et al., 
163 2021a) and revealed a relationship between the site where individuals were collected 
164 and the genetic group to which they were assigned (Fig. 1B). The Evanno method
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Fig. 1 Graphs illustrating the structure analysis performed on the oat dataset using STRUC-
TURE and showing the existence of three genetic groups: Byzantina (257 individuals), Sativa A
(243 individuals) and Sativa B (199 individuals). Graphs include (A) an admixture barplot
showing the admixture proportions of each individual, (B) a map of the Mediterranean Basin
with dots indicating the location where individuals have been collected (Canales et al., 2021a),
and (C) the two principal components of a principal component analysis (PCA) performed on
genomic data. For graphs B and C, dots were colored according to the group to which each
individual was assigned based on its maximal admixture coefficient.

165 was applied was applied and supported the use of Q = 2 groups due to the high 166 

genetic divergence between Byzantina and Sativa subspecies (Online Resource 167 

Figure S2). Like in Canales et al. (2021a), where a similar structure analysis 168 was 
performed on this same dataset with very consistent results, and a previous 169 study 
based on SSR markers (Montilla-Bascón et al., 2013), we subdivided the 170 Sativa 
group into two groups, which was supported by a substantial proportion of 171 variance 
explained by the axis differentiating these groups (14.54%) for a principal 172 component 
analysis (PCA) performed on the genomic data (Fig 1C). Note that, 173 unlike in Canales 
et al. (2021a), we did not define additional categories for admixed 174 individuals.

175 Phenotypic analysis

176 The oat collection was evaluated in 2017 and 2018 in Cordoba (Spain) with an 
177 altitude of 90 m and light clay calcic cambisol soil, and in 2018 in Santaella (Spain) 
178 with an altitude of 238 m, and a light clay eutric gleysol soil, forming three distinct 
179 trials (Co17, Co18, and Sa18). Each trial was an alpha lattice square design with 
180 three replicates using the cultivar Patones as check. Four agronomic traits were 
181 evaluated: heading time (Heading) in growing degree-days, plant height (Height)
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ir G

182 in cm, vegetative biomass (Biomass) in t/ha and grain yield (Yield) in t/ha, see 
183 Canales (2019) and Canales et al. (2021a) for more details. The contribution of 
184 genotype-by-environment (GxE) interactions to the phenotypic variance and the 
185 broad-sense heritability were investigated using the following model:

Yijkr = µ + αk + βj + Gik + (G × β)ijk + γrj + Eijkr,

186 where Yijkr is the phenotype of individual i from group k in block r of trial 
187 j, µ is the global intercept, αk is the effect of group k with k ∈ {By, SaA, SaB} 
188 (By: Byzantina, SaA: Sativa A and SaB: Sativa B), βj is the effect of trial( j, Gik)
189 is the random genotypic effect of individual i from group k with Gik ∼ N 0, σ2

Gk

190 independent, (G × β)ijk is the random genotype-by-env onment ( xE) effect of

individual i from group k in trial j with (G× β)ijk ∼ N
(

0, σ2
G×β)k

)
independent,191

γrj is the effect of block r in trial j, and Eijkr is the error of individual i from192

group k in block r of trial j with Eiijkr) ∼ N
(
0, σ2

E

)
independent and identically193

distributed. All random effects are assumed to be independent of each other.194

Model parameters were estimated using the R package “MM4LMM” (Laporte and195

Mary-Huard, 2020). The group-specific means were calculated as following:196

µk = µ+ αk +
1

J

J∑
j=1

βj +
1

JR

J∑
j=1

R∑
r=1

γrj ,

where J = 3 is the number of trials and R = 3 is the number of blocks in each197

trial. The group-specific broad-sense heritabilities were calculated as following:198

H2
k =

σ2
Gk

σ2
Gk

+ 1
J σ

2
G×βk

+ 1
JRσ

2
E

,

Least-square means (LS-means) of each individual (Y ∗
ik) were computed based199

on the same model with Gik and (G× β)ijk as fixed effects using:200

Y ∗
ik = µk +Gik +

1

J

J∑
j=1

(G× β)ijk,

and were further referred to as phenotypes for GP analyses.201

Genomic prediction models202

In this study, the first four GP models (GBLUP, MGBLUP, Bayes-B and RKHS)203

can be written as:204

y = Xβ+Zg+ e, (1)

where y is the vector of reference phenotypes (i.e., the LSmeans), X is the design205

matrix for fixed effects, β is the vector of fixed effects, Z is the incidence matrix206

linking phenotypes to breeding values, g is the vector of breeding values and e is207

the vector of errors. All models assume independence between g and e.208
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GBLUP A standard additive GBLUP model was applied using the R package209

“rrBLUP” (Endelman, 2011) with the following assumptions: β = µ is the overall210

mean, g ∼ N (0,Kσ2
G), K is the kinship matrix, σ2

G is the genetic variance,211

e ∼ N (0, Iσ2
E), I is the identity matrix and σ2

E is the error variance. The kinship212

between individuals i and j (Ki,j) was computed following VanRaden (2008):213

Ki,j =

∑M
m=1(Wim − fm)(Wjm − fm)∑M

m=1 fm(1− fm)
, (2)

where M is the number of markers, Wim is the genotypic score of individual i at214

locus m (coded 0; 0.5; 1) and fm is the frequency of allele “1” at locus m estimated215

on the whole dataset.216

MGBLUP A multi-group GBLUP (MGBLUP) model (Lehermeier et al., 2015) was217

applied using the R package “MTM”2. This model consists of adapting a multi-trait218

model to the analysis of one trait in different groups, which allows for group-specific219

genetic variances and specific genetic covariances between groups. In this model,220

β = (µBy, µSaA, µSaB)T is the vector of group-specific means, g =

 g∗Byg∗SaA
g∗SaB

 is the221

expanded vector of breeding values of each individual in each group of size of 3N ,222

N being the number of individuals, where:223  g∗Byg∗SaA
g∗SaB

 ∼ N
0,

 σ2
GBy

σGBy,B
σGBy,SaB

σGBy,SaA
σ2
GSaA

σGSaA,SaB

σGBy,SaB
σGSaA,SaB

σ2
GSaB

⊗K

, with σGX,Y
being the224

genetic covariance between groups X and Y (the letters X, Y are further used as225

group names when not specifically designating given groups), K the same kinship226

matrix computed following Eq. (2), and e =

 eByeSaA
eSaB

 is the vector of errors of size227

N where:

eAeB
eC

 ∼ N
0,

IByσ2
EBy

0

0 ISaAσ
2
ESaA

0
0 0 ISaBσ

2
ESaB

, IX is the identity228

matrix with dimensions equal to the number of observations from group X and229

σ2
EX

is the error variance in group X. The choice of hyper-parameters for the230

inference was done following Lehermeier et al. (2015).231

Bayes-B The Bayesian shrinkage regression Bayes-B proposed by Meuwissen et al.232

(2001) was applied using the R package “BGLR” (Pérez and de los Campos, 2014).233

In Bayes-B, only a proportion of a markers can have a non-zero effect with a234

variance specific to each marker. This modeling represents genetic architectures235

for which some SNPs are not associated to any QTL while others are associated236

to QTL with potentially large effects. In this model, g = Wu, W is the centered237

genotyping matrix and u is the vector of marker effects where the prior distribution238

of each um is the following mixture distribution:239

P (um|π) =

{
0 with probability π,

t(0, ν, S2) otherwise,

2 available at https://github.com/QuantGen/MTM
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where π is the proportion of marker with null effect, t(0, ν, S2) is the scaled-t240

distribution with ν and S2 being the number of degrees of freedom and the scale241

parameter, respectively. Other terms are identical to those of GBLUP.242

RKHS The reproducing kernel Hilbert space (RKHS) semiparametric approach243

for genomic prediction (Gianola et al., 2006; Gianola and van Kaam, 2008) was244

applied using R package “BGLR” (Pérez and de los Campos, 2014). This approach245

combines a classical additive genetic model with a kernel function which converts246

predictor variables into set of distances among observations. The RKHS model247

based on a Gaussian kernel has been demonstrated to capture epistatic effects248

between markers (Jiang and Reif, 2015). In this model, g = Khα, Kh is the matrix249

of kernel entries and α is the vector of individual effects. Other terms are identical250

to those of GBLUP. The kernel function implemented here was a Gaussian kernel:251

Kh(Wi,Wj) = e−hdi,j ,

where h is a smoothing parameter and di,j is the marker-based Euclidean distance252

between individuals i and j. The value of the smoothing parameter was chosen253

following the kernel averaging method proposed in Pérez and de los Campos (2014).254

Random Forest The tree-based machine learning approach called Random Forest255

(Breiman, 2001; Chen and Ishwaran, 2012) was applied using the R package256

“randomForest” (Liaw and Wiener, 2007). The grouping property of trees enables257

the Random Forest to adequately deal with correlations and interactions between258

predictor variables (Chen and Ishwaran, 2012). In this approach, the vector y259

of phenotypes was used as the vector of response variable while the centered260

genotyping matrix W was used as the matrix of predictor variables.261

For the GP models based on a Bayesian inference (MGBLUP, Bayes-B and262

RKHS), 10,000 MCMC iterations were considered with a burn-in of 1,000 iterations263

and a thinning of 3 (i.e., one out of three samples were conserved to compute264

posterior means).265

Evaluation of the predictive ability of genomic prediction266

The precision of the models was evaluated using three different cross-validation267

(CV) procedures where the predictive ability was calculated by correlating the268

predictions of breeding values of the TS to the reference phenotypes (i.e., the269

LSmeans).270

The first CV procedure, referred to as holdout cross-validation (HO-CV), was271

performed by repeatedly splitting (x 100) the oat population into a TRS and a272

TS with proportions being 4/5 and 1/5, respectively. This CV procedure makes it273

possible to study the level of precision that can be obtained when neglecting the274

role of genetic structure.275

The second CV procedure, referred to as leave-one-out cross-validation (LOO-276

CV), was performed by predicting the breeding value of each individual using a277

model trained on all the remaining individuals. It allowed a joint graphic repre-278

sentation of the quality of prediction of all individuals depending on their genetic279

group.280
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The third CV procedure, referred to as structured-holdout cross validation281

(SHO-CV), allowed to study the impact of genetic structure on the predictive ability,282

as presented in Rio et al. (2019). In SHO-CV, group-specific TSs of 49 individuals283

were predicted using a model calibrated on 150 other individuals. Depending on284

the scenario, the training set included either members of a single group (e.g.,285

150 individuals from the Byzantina group), or of the three groups in balanced286

proportions (i.e., 50 individuals from each group). The sampling was repeated 100287

times for each scenario.288

Training set optimization289

For TRS optimization, the oat population was repeatedly split (x 30) into a290

candidate set (CS) of NCS individuals and a TS of NTS individuals (Fig. 2).291

Both the CS and the TS were defined differently depending on the optimization292

scenario (see below). The TRS individuals were then selected among CS individuals293

based on PEVmean, CDmean or PAM (see below) and using a genetic algorithm294

implemented in the R package “STPGA” (Akdemir, 2017), using 500 iterations.295

For each TS, 30 random TRS were sampled as a benchmark. For each trait, the296

breeding values of TS individuals were then predicted using a GBLUP model297

trained on TRS individuals, and the predictive ability was calculated to compare298

optimization methods. Three different criteria were considered:299

PEVmean and CDmean The PEVmean and CDmean optimization criteria are300

derived from the GBLUP linear mixed model. The PEVmean criterion is defined301

as the mean of the predictor error variance over a set of individuals, where each302

PEVi can be computed as:303

PEVi = Var(gi − ĝi) =
(
ZMZT +K−1λ

)−1

i,i
× σ2

E ,

where gi is the breeding value of i, ĝi is the best linear unbiased prediction (BLUP)304

of gi, M = I−X(XTX)−XT is an orthogonal projector on the subspace spanned305

by the columns of X where (XTX)− is a generalized inverse of XTX (Laloë, 1993),306

and λ =
σ2
E

σ2
G

. All other terms correspond to those described in the GBLUP model.307

The CDmean criterion is defined as the mean of the coefficient of determination308

(i.e., the square correlation between the breeding value of an individual and its309

corresponding prediction) where each individual CD can be computed as:310

CDi = cor(gi, ĝi)
2 =

(
K − λ

(
ZMZT +K−1λ

)−1
)
i,i

Ki,i

In this study, both PEVmean and CDmean optimizations were “targeted” (Akdemir311

and Isidro-Sánchez, 2019), meaning that the criteria were computed directly over312

the TS individuals. Note that finding the best TRS is be done by minimizing313

PEVmean while it is done by maximizing CDmean.314
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Fig. 2 Diagram illustrating the training set (TRS) optimization procedure where the oat
population was repeatedly split (x 30) into a candidate set (CS) of NCS individuals and a
test set (TS) of NTS individuals. Training set individuals were selected among CS individuals
using a genetic algorithm (STPGA) and different methods: (i) the mean of the prediction error
variance (PEVmean) of the TS, (ii) the mean of the coefficient of determination (CDmean)
of the TS and (iii) partitioning around medoids (PAM). For each TS, 30 random TRS were
sampled as a benchmark. The breeding values of TS individuals were then predicted using
a GBLUP model trained on TRS individuals for each trait, before calculating the predictive
ability for validation.

PAM Partitioning around medoids is a clustering method that classifies individuals315

into clusters by minimizing the sum of dissimilarities between the individuals of each316

cluster, and designating a central individual, or medoid of that cluster (Kaufman317

and Rousseeuw, 1987). The application of PAM to TRS optimization and genomic318

data was first presented by Guo et al. (2019).319

Two optimization scenarios were considered in this study:320
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Standard optimization Test sets of 99 individuals were randomly sampled (i.e.,321

by neglecting genetic structure). The CS consisted of all the remaining individ-322

uals. Optimized TRSs were selected for a gradient of TRS sizes (i.e., NTRS ∈323

{10, 30, 60, 100, 200, 300, 600}). Note that when NTRS = 600, all CS individuals324

325 are included in the TRS.

326 Structure-based optimization. We sampled group-specific TSs of 49 individuals 
327 (e.g., 49 individuals from the Byzantina group). The CS consisted of 150 remaining 
328 individuals from each genetic group. Optimized TRSs were selected for a gradient 
329 of TRS sizes (i.e., NTRS ∈ {9, 15, 30, 60, 90, 120, 150}). Note that NTRS = 150 
330 corresponds to the limit for which only individuals from the same groups as TS 
331 individuals can be selected during the optimization procedure.

332 Results

333 Phenotypic characterization of the population

334 Our oat population has been evaluated for four agronomic traits: Heading, Height, 335 

Biomass and Yield. As expected, agronomic performance of the collection varied 336 

overall in the different environments. In addition to the different altitudes and 337 soil 
structure of the different sites already stated, Co17 was characterised by a 338 mean 
maximum Ta of 21.49oC, a mean minimum of 7.51oC and a rainfall of 415 339 mm during 
the growing season. Co18 was slighty warmer with a mean maximum 340 Ta of 21.50oC, a 
mean minimum of 8.46oC and a rain of 497 mm during the 341 growing season. Sa18, was 
slighty colder and rainier than any of the environments 342 of Cordoba, with a mean 
maximum Ta of 20.07 oC, a mean minimum of 7.64oC 343 and a rainfall of 513 mm during 
the growing season (Online Resource Table S1). 344 In these environments, mean 
Heading values ranged from 174 days to heading 345 at Co18 to 150 days at Co17, with a 
minimum of 118 days and a maximum of 346 200 days to heading. Mean Height values 
ranged from 115 cm at Co18 to 139 cm 347 at Sa18 with the shortest accession reaching 68 
cm and the longest reaching 191 348 cm. Regarding Biomass, mean values ranged from 
6832 kg/ha at Co17 to 2893 at 349 Co18 with minimum values of 190 kg/ha and 
maximum of 11766 Kg/ha. Mean 350 yield ranged from 2326 Kg/ha at Sa18 to 983 kg/ha 
at Co18, with the highest 351 yielding accessions reaching 5326 Kg/ha and the lowest one 
yielding 180 Kg /ha. All 352 evaluated traits showed moderate to high broad-sense 
heritabilities, with variations 353 depending on the genetic group (Table 1). For instance, a 
broad-sense heritability 354 of 0.57, 0.74 and 0.55 were estimated for Biomass in the 
Byzantina, Sativa A and 355 Sativa B groups, respectively. Those variations could be 
connected to the differences 356 in genetic variances observed between groups (i.e., the 
larger the group-specific

genetic variance σ2
GX

, the higher the group-specific broad-sense heritability H2
X).357

The GxE variances were not large for most traits and also variable depending on358

the genetic group. In terms of means, the performances of each genetic group were359

comparable for most traits, but the Byzantina group outperformed both Sativa360

groups for Yield and Biomass.361
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Table 1 Group-specific means, variances and broad-sense heritabilities estimated in the
phenotypic analysis for Heading (in 100 growing degree-days (GDD)), Height (in cm), Biomass
(in t/ha) and Yield (in t/ha).

Heading Height Biomass Yield
µBy 9.62 131.33 5.91 1.85
µSaA 10.71 124.63 5.19 1.43
µSaB 10.60 133.54 5.25 1.25
σ2
GBy

0.76 76.43 0.95 0.14

σ2
GSaA

2.01 113.13 2.38 0.46

σ2
GSaB

1.04 290.85 1.38 0.14

σ2
(G×β)By

0.04 0.00 0.52 0.11

σ2
(G×β)SaA

0.28 79.98 0.84 0.12

σ2
(G×β)SaB

0.18 11.44 1.72 0.06

σ2
E 0.27 189.33 4.95 0.32
H2
By 0.95 0.78 0.57 0.65

H2
SaA 0.94 0.70 0.74 0.86

H2
SaB 0.92 0.92 0.55 0.72

Predictive ability of genomic prediction models362

The GP predictive ability was evaluated using HO-CV for different GP models:363

GBLUP, Bayes-B, RKHS, Random-Forest and MGBLUP (Fig. 3). The mean364

predictive abilities averaged over all models were 0.87, 0.72, 0.63 and 0.81 for365

Heading, Height, Biomass and Yield, respectively. In terms of model comparison,366

GBLUP, RKHS and MGBLUP showed similar predictive abilities for all traits.367

Bayes-B showed similar predictive ability to GBLUP (our reference model) for368

Heading, Height and Yield, and higher predictions than GBLUP for Biomass (0.68369

vs. 0.60).370

Training set optimization targeting random test sets371

Three TRS optimization methods (PEVmean, CDmean and PAM) were compared372

to random sampling for a gradient of TRS sizes and validated using the four traits373

(Fig. 4). For all traits, the predictive capability increased with the size of the TRS,374

but at a rate that decreased as the size of the TRS increased. Optimizations of375

TRS based on PEVmean and CDmean performed very similarly and generally376

allowed for higher gains compared to the optimization based on PAM. For Height377

and NTRS = 100, TRSs selected by CDmean and PEVmean showed a mean378

predictive ability of 0.70 compared to 0.61 and 0.60 for PAM and random sampling,379

respectively. The gains obtained with the optimization based on PAM were very380

variable depending on the trait, and even led to a substantial loss in predictive381

ability for Biomass (e.g., for NTRS = 100, TRSs selected by PAM showed a382

mean predictive ability of 0.35 compared to 0.43 for random sampling). The mean383

group proportions within selected TRSs did not reveal major differences between384

optimization methods (Online Resource Fig. S3).385
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Fig. 3 Boxplots of predictive abilities obtained for each trait using holdout cross-validations (x
100 replicates) and five GP models: GBLUP, Bayes-B, RKHS, Random-Forest and multi-group
GBLUP (MGBLUP).

Genetic structure and predictive ability386

The impact of genetic structure on the predictive ability was first investigated387

graphically using LOO-CV (Online Resource Fig. S4). This approach confirmed388

the ability of the GBLUP model to predict differences in mean between groups and389

suggested an ability of the model to predict beyond this simple effect of genetic390

structure. We then investigated the impact of genetic structure using SHO-CV391

to explore within/across/multi-group scenarios (Fig. 5). In general, to predict392

a group-specific TS, the best strategy was to train a model using individuals393

from the same genetic group. The worst predictive abilities were obtained by394

training a model using the Byzantina group to predict any of the Sativa groups, or395

vice versa. Interestingly, a negative mean correlation of -0.55 was obtained when396

predicting the Sativa group using the Byzantina group for Heading. In general, the397

predictive abilities obtained with across-group scenarios between the Sativa A and398

Sativa B groups were moderate but not always symetric. For instance, with Yield,399

a predictive ability of 0.58 was achieved when training a model on the Sativa B400

group to predict the Sativa A group, while a predictive ability of 0.22 was obtained401

for the opposite scenario. Multi-group TRSs always allowed for moderate to high402

predictive abilities regardless of the targeted TS.403

Training set optimization targeting group-specific test sets404

The impact of genetic structure on TRS optimization was investigated using405

structure-based optimization scenarios (Fig. 6). Two optimization methods (CD-406
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Fig. 4 Plots of mean GBLUP predictive abilities over random test sets (TSs) of 99 individuals
(x 30 replicates) according to the size of the training set (TRS) for (A) Heading, (B) Height, (C)
Biomass and (D) Yield. Different optimization methods were compared: PEVmean, CDmean
and PAM, along with random sampling as a benchmark (x 30 replicates for each TS).

mean and PAM) were compared to random sampling for selecting TRSs that best407

predict group-specific TSs. The optimization based on CDmean always led to higher408

gains compared to PAM. The differences between optimization methods could409

largely be explained by the ability of CDmean to preferentially select individuals410

from the same genetic group as the one in the TS, unlike PAM or random sam-411

pling (Online Resource Fig. S5). However, the observed gains were very variable412

depending on the group-specific TS and the trait. For NTRS = 30 and Yield, the413

gains in predictive ability from selecting TRSs using CDmean compared to random414

was +0.35 for Byzantina TSs compared to +0.03 for Sativa A TSs (Fig. 6).415
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Fig. 5 Heatmaps of mean GBLUP predictive abilities obtained using the structured holdout
cross-validations (x 100 replicates) for (A) Heading, (B) Height, (C) Biomass and (D) Yield.
Group-specific training sets (TRSs) and multi-group TRSs of 150 individuals are indicated on
the x axis while group-specific test sets of 49 individuals are indicated on the y axis. Standard
deviations are shown between brackets.

416 Discussion

417 Oat genomics-assisted breeding in the Mediterranean basin

418 The GP predictive ability of oat agronomic and phenological traits has only been 
419 the subject of a few studies in the last past years (Asoro et al., 2011; Bekele et al., 420 

2018; Haikka et al., 2020b,a; Mellers et al., 2020). The moderate to high predictive 421 

abilities obtained in our study are comparable to the ones obtained in the latter 422 

studies. It confirms the value of GBS-SNP markers as a genotyping technology for 423 

implementing GS in oat breeding programs, as proposed by Huang et al. (2014). 424 The 
similar performances achieved by the different GP models tested in this study 425 is a 
common feature in the GP literature (Heslot et al., 2012; de los Campos 426 et al., 2013). 
The large gain in predictive ability obtained by applying Bayes-B for
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Fig. 6 Plots of mean GBLUP predictive abilities (Mean pred. ability) over group-specific test
sets (TS) of 49 individuals (x 30 replicates) according to the size of the training set (TRS)
for (A) Heading, (B) Height, (C) Biomass and (D) Yield. Two optimization methods were
compared: CDmean and PAM, along with random sampling with equal group contributions in
the TRS as a benchmark (x 30 replicates for each TS). Each candidate set consisted of 450
individuals, including 150 from each of the three genetic groups.

Biomass may result from the existence of a QTL with large effect segregating in427

the population that can better be accounted for using Bayes-B (Meuwissen et al.,428

2001; Pérez and de los Campos, 2014).429

To improve the productivity of oats in the hot and dry environment of the430

Mediterranean basin, breeding programs must not only be based on the use of431

efficient tools like GP, but also on the introgression of favorable alleles from various432

sources of genetic diversity. Landraces harbour a great genetic potential for oat433

improvement as they are endued with a higher genetic variability compared to high-434

yielding cultivars (Montilla-Bascón et al., 2013; Sánchez-Mart́ın et al., 2016; Winkler435

et al., 2016). The population evaluated in our study includes landraces and cultivars436

of both white and red oats. A restricted set of this broad germplasm has already been437

characterized in field trials in different countries of the Mediterranean rim (Sánchez-438

Mart́ın et al., 2014) and showed potential to detect QTL for powdery mildew and439

crown rust resistance (Montilla-Bascón et al., 2015), as well as agronomic traits440

(Rispail et al., 2018). In our study, all genetic groups showed a substantial genetic441

variance and comparable means for all traits. We can reasonably assume that442

different QTL are involved in the trait genetic variability depending on the genetic443

group. Since population structure results from differences in allele frequencies444
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between groups, a QTL may indeed be polymorphic in one group and contribute445

to its genetic variance, while being fixed in another group. This suggests a great446

potential of both white and red oat landraces for harnessing new alleles to be447

introgressed into elite germplasm using pre-breeding methods based on GP (Gorjanc448

et al., 2016; Allier et al., 2020).449

Genomic prediction in a highly structured population450

When assessing the predictive ability of GP within structured populations, the451

observed predictive ability may result mostly from the ability of the model to452

predict differences in mean between groups (Guo et al., 2014; Rio et al., 2019). For453

all traits, the SHO-CV showed that the predictive ability was also moderate to454

high when considering group-specific TSs, meaning that it would be possible to455

identify the best individuals within each genetic group (Fig. 5). Our results were456

in concordance with previous studies on GP in structured populations (Rio et al.,457

2019). Thus, (i) a given group-specific TS was generally best predicted using a TRS458

including only individuals from the same genetic group, (ii) applying across-group459

predictions could highly depreciate the GP predictive ability, and (iii) a multi-group460

TRS showed a high predictive ability, regardless of the targeted TS.461

The genetic dissimilarity between the two oat subspecies sativa and byzantina462

was illustrated by the difficulty to predict one of them using a model trained463

on the other (Fig. 5). The substantial negative predictive ability obtained when464

predicting the Sativa A group using a model trained on the Byzantina group for465

Heading is uncommon in GP. It may result from the existence of QTL segregating466

in the population with effects of opposite signs depending on the genetic group.467

Interestingly, previous results based on the same data (Canales et al., 2021a)468

identified a marker associated with heading date (avgbs cluster 1918.1) located469

in chromosome 1D in the hexaploid reference genome. Comparison of the region470

around the marker between the byzantina and sativa preliminary genome assemblies471

have identified the GAS4-like gibberellin responsive gene, and a gene with homology472

to miR172 as potential candidates genes (Canales et al., 2021a). Conversely to what473

was observed between Byzantina and Sativa groups, both Sativa A and Sativa B474

were able to predict each other with moderate predictive abilities. This difference475

can be explained by a greater genetic similarity between the Sativa groups compared476

to that observed between the Sativa and Byzantina groups (Fig. 1C). These results477

are in concordance with the existence of moderate population structure in white478

oat, as observed in previous studies (Asoro et al., 2011; Newell et al., 2011, 2012;479

Huang et al., 2014; Tumino et al., 2016; Esvelt Klos et al., 2016; Winkler et al., 2016;480

Bjørnstad et al., 2017; Haikka et al., 2020b,a; Isidro-Sánchez et al., 2020a). They481

also illustrate the need for the evaluation of population structure when applying482

GP to a broad diversity (Isidro et al., 2015; Guo et al., 2019). Defining a TRS must483

be done by selecting individuals from the same genetic groups as those represented484

in the target population to maximize the predictive ability of GPs. If the target485

population is not clearly identified, the best strategy is to define a generic TRS486

that include all genetic groups (de Roos et al., 2009; Rio et al., 2019).487
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Training set optimization in a highly structured population488

Training set optimization methods like CDmean, PEVmean and PAM can be used489

to select a subset of individuals to be evaluated when budget limitations limit490

the possibility to evaluate all possible individuals through extensive field trials491

(see Akdemir and Isidro-Sánchez (2019) and references herein). Unlike previous492

TRS optimization results in highly structured population presented by Isidro et al.493

(2015), in our results CDmean and PEVmean allowed for substantial gains compared494

to random sampling for all traits. This might be explained by several differences495

regarding the methodology: (i) the criteria were computed directly on the TS using496

the targeted optimization recommended by Akdemir and Isidro-Sánchez (2019)497

rather than on the remaining candidates, and (ii) the optimization algorithm was498

the genetic algorithm implemented in the “STPGA” R package (Akdemir, 2017)499

rather than an exchange algorithm. Note also that the CD and the PEV computed500

were those associated with the prediction of each breeding value and not with a501

contrast between a set of breeding values. A possible extension of the CDmean and502

PEVmean optimization criteria could be to compute the CD and PEV associated503

with contrasts between the breeding value of each TS individual and the mean of504

the TS, as recommended by Rincent et al. (2017).505

The performance of the optimization based on PAM proposed by Guo et al.506

(2019) was highly variable and could even lead to predictive abilities that were worse507

than those obtained by random sampling. Our results illustrate the superiority508

of using criteria that are directly connected to the quantity of interest (e.g., CD509

corresponds to the model-based square correlation between the breeding value510

of an individual and its prediction) rather than using heuristic approaches like511

PAM. The aim of the optimization based on PAM is indeed to maximize the GP512

predictive ability by maximizing the genetic distances between TRS individuals.513

The differences between PAM and CDmean/PEVmean optimizations show that a514

targeted optimization based on CDmean/PEVmean not only aims at maximizing515

the distances between TRS individuals, but also implicitly accounts for other516

criteria such as the minimization of the genetic distances between TRS and TS517

individuals (Pszczola et al., 2012; Albrecht et al., 2011; Clark et al., 2012). The518

superiority of the targeted CDmean compared to PAM was also shown by its519

ability to select the TRS according to the nature of the target. For instance, if520

the target consists only of Byzantina individuals, then a straightforward strategy521

would be to preferentially select Byzantina individuals to form the TRS. While522

this strategy is implicitly applied using a targeted CDmean optimization, the PAM523

optimization does not account for any information of the TS, and may lead to524

selecting individuals that are poorly connected to the targeted population.525

Conclusion526

This manuscript presents results on the GP of key agronomic traits in a diverse527

populations of Mediterranean oat cultivars and landraces. The consistency between528

the structure of the training population and the population to be predicted was529

key to the predictive ability of genomic predictions. Regarding TRS optimization,530

the superiority of CDmean and PEVmean compared to PAM was illustrated by531

their ability to adapt the representation of each genetic group according to those532
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represented in the population to be predicted. Our findings are useful for future533

studies that aims to implement genomics-assisted breeding tools in presence of534

high population structure in oat and other species.535
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Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnologia
Agraria y Alimentaria (INIA) Campus de Montegancedo-UPM 28223-Pozuelo de

Alarcón, (Madrid), Spain
2Institute for Sustainable Agriculture, Spanish Research Council (CSIC), Córdoba,
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Supplementary Figure S1. Admixture barplots showing the admixture proportions of each
individual and obtained using STRUCTURE for different numbers of genetic groups: (A) Q = 2,
(B) Q = 3, (C) Q = 4, and (D) Q = 5.
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Supplementary Figure S2. Mean group proportions in the training set (TRS) according to TRS
size obtained using different optimization methods (over 30 random test sets (TSs)): PEVmean,
CDmean and PAM, along with random sampling as a benchmark (x 30 replicates for each TS)
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Supplementary Figure S3. Plots of genomic estimated breeding values (GEBVs) against LS-
means obtained by leave-one-out (LOO) cross-validation using GBLUP for (A) Heading (in growing
degree-days (GDD), (B) Height (in cm), (C) Biomass (in t/ha) and (D) Yield (in t/ha). Each dot
represents one individual and was colored according to its genetic group. Big dots represent the
mean of GEBVs and LS-means for each group.
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Supplementary Figure S4. Mean group proportions in the training set (TRS) according to TRS
size obtained using different optimization methods (over 30 random test sets (TSs)): CDmean and
PAM, along with random sampling with equal group contributions in the TRS as a benchmark (x 30
replicates for each TS). Each candidate set consisted in a of 450 individuals, including 150 of each of
the three genetic groups.
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