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Abstract
Key message  New forms of the coefficient of determination can help to forecast the accuracy of genomic prediction 
and optimize experimental designs in multi-environment trials with genotype-by-environment interactions.
Abstract  In multi-environment trials, the relative performance of genotypes may vary depending on the environmental 
conditions, and this phenomenon is commonly referred to as genotype-by-environment interaction (G×E). With genomic 
prediction, G × E can be accounted for by modeling the genetic covariance between trials, even when the overall experimental 
design is highly unbalanced between trials, thanks to the genomic relationship between genotypes. In this study, we propose 
new forms of the coefficient of determination (CD, i.e., the expected model-based square correlation between a genetic 
value and its corresponding prediction) that can be used to forecast the genomic prediction reliability of genotypes, both 
for their trial-specific performance and their mean performance. As the expected prediction reliability based on these new 
CD criteria is generally a good approximation of the observed reliability, we demonstrate that they can be used to optimize 
multi-environment trials in the presence of G × E. In addition, this reliability may be highly variable between genotypes, 
especially in unbalanced designs with complex pedigree relationships between genotypes. Therefore, it can be useful for 
breeders to assess it before selecting genotypes based on their predicted genetic values. Using a wheat population evaluated 
both for simulated and phenology traits, and two maize populations evaluated for grain yield, we illustrate this approach and 
confirm the value of our new CD criteria.

Introduction

In plant breeding, the best performing genotypes for a 
given trait are identified through field trials. Depend-
ing on the environmental conditions (e.g., temperature 
or rainfall), the relative performance of genotypes may 
vary, and this phenomenon is commonly referred to as 

genotype-by-environment interaction (G× E, see Malosetti 
et al. (2013) and van Eeuwijk et al. (2016) for reviews). The 
characterization of G × E involves the evaluation of geno-
types in a set of environments representing the cultivation 
area: the so-called multi-environment trials (METs). If the 
G×E landscape is stable over the years, environments can 
be clustered into mega-environments that can be used to 
select genotypes with local adaptations (Gauch and Zobel 
1997). Over the last decades, dedicated statistical method-
ologies have been developed to study G × E including: (i) 
the regression proposed by Finlay and Wilkinson (1963), 
(ii) the additive main effect and multiplicative interaction 
(AMMI) model (Gauch and Zobel 1988; van Eeuwijk 1995), 
(iii) the genotype main effect and G × E (GGE) model (Yan 
et al. 2000), (iv) the factorial regression modeling environ-
mental covariates (Denis 1988; van Eeuwijk and Elgersma 
1993), or (v) the random modeling of trial-specific genotype 
performances (Denis et al. 1997; Smith et al. 2005).

The advent of high-throughput genotyping has revolu-
tionized the methods used to select for quantitative traits 
by enabling the genomic prediction of the genetic value of 
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unobserved genotypes (Meuwissen et al. 2001). Regarding 
METs, genomic data can help to account for G × E without 
the need to replicate genotypes within and across trials, as 
well as to predict the performance of genotypes in environ-
ments in which they have not been observed (Burgueño et al. 
2012; Guo et al. 2013; Endelman et al. 2014; Ankamah-
Yeboah et al. 2020; Jarquin et al. 2020). Several approaches 
have been proposed to account for G × E in genomic predic-
tion including adaptations of the GBLUP model based on 
linear (Burgueño et al. 2012; Jarquín et al. 2013; Lopez-
Cruz et al. 2015; Crossa et al. 2016a) or non-linear kernels 
(Cuevas et al. 2016a; Cuevas et al. 2016b), approaches inte-
grating crop growth models and genomic data (Heslot et al. 
2013; Technow et al. 2015; Rincent et al. 2019), or deep 
learning methods (Montesinos-López et al. 2018).

In genomic selection, the ability to identify the best geno-
types is closely related to the precision with which genetic 
values are predicted. This precision is most often evaluated 
using the correlation between the true and the predicted 
genetic values (then defined as the accuracy) or using the 
same correlation squared (then defined as reliability, here 
R
2

G
 ). This precision can be assessed before the experiment 

using deterministic formulas based on population param-
eters (Daetwyler et al. 2008; Goddard et al. 2011) or other 
indicators like the coefficient of determination (CD) (Van-
Raden , 2008) which corresponds to the expected model-
based R2

G
 . In the context of GBLUP, CD depends only on 

variance parameters and the structure of the covariance (i.e., 
the genomic relationship matrix for genetic values and the 
identity matrix for errors). It has been used to forecast the 
R
2

G
 using simulations (Goddard et al. 2011), animal (Hayes 

et al. 2009), or plant data (He et al. 2016). Adaptations of 
CD to complex covariance structures have been proposed 
and evaluated in the context of multi-group (Wientjes et al. 
2015; Schopp et al. 2017; Rio et al. 2019) or multi-trait pre-
dictions (Ben-Sadoun et al. 2020). Such a statistical frame-
work is also well suited to forecast R2

G
 in METs with G × E, 

but to the best of our knowledge, it was not the subject of 
previous studies.

When designing METs, an important question is how to 
assign genotypes to plots to identify those that are best in 
each environment or for the overall cultivation area (i.e., 
regarding the mean performance). Several studies have 
focused on the allocation of genotypes to plots in one 
(de S. Bueno Filho and Gilmour , 2003; de S. Bueno Filho 
and Gilmour , 2007; Piepho and Williams , 2006; But-
ler et al. 2014) or more environments (Feoktistov et al. 
2017; Rincent et al. 2017b; González-Barrios et al. 2019; 
Cullis et al. 2020) in presence of known kinship between 
genotypes. The ability of CD to forecast the R2

G
 makes 

it a valuable criterion to optimize experimental designs. 
A simple application is the selection of the genotypes 
to be included in a training set (TRS) among a large set 

of candidates using the mean of individual CDs (Rin-
cent et al. 2012; Isidro et al. 2015; Rincent et al. 2017a; 
Akdemir and Isidro-Sánchez , 2019; Isidro-Sánchez and 
Akdemir , 2021). However, this scenario does not assume 
the existence of several environments for which genetic 
values may be different but correlated due to G × E. In this 
context, an important question is whether accounting for 
this heterogeneity of genetic values between trials in the 
optimization procedure helps to obtain MET experimental 
designs that maximize the R2

G
 in presence of G ×E.

The objectives of this study were to (i) confirm the value 
of multivariate genomic prediction models in the context 
of METs with G × E, (ii) present new CD criteria derived 
from those multivariate models and evaluate their ability to 
forecast the R2

G
 of both the trial-specific performance and the 

mean performance, (iii) evaluate the ability of new criteria 
to rank and optimize experimental designs based on the R2

G
 . 

Note that the experimental designs tested in this study did 
not aim at evaluating the impact of the allocation of geno-
types according to spatial characteristics within trials. Large 
publicly available wheat and maize datasets were used to 
address those objectives using both simulated and real traits.

Material and methods

Genomic prediction models

In this study, we considered a general multivariate model 
where response variables corresponded to the same trait in 
different trials. This multivariate model is presented here 
in a vectorized form:

where y =
⎡⎢⎢⎣

y1
...

y
T

⎤⎥⎥⎦
 is the concatenated vector of phenotypes in 

T trials, � = (�1, ...,�T
)T is the vector of fixed trial means, 

X is the design matrix for fixed effects, g =

⎡⎢⎢⎣

g1
...

g
T

⎤⎥⎥⎦
 is the con-

catenated vector of random trial-specific genetic values with 
g ∼ N(0,G) and G being the covariance matrix of g , Z is the 
incidence matrix linking phenotypic observations to trial-
specific genetic values, e is the vector of errors with 
e ∼ N(0,R) and R being the covariance matrix of e . Inde-
pendence is assumed between g and e.

Let us assume G = �
G

⨂
K where K is the genomic 

relationship matrix between genotypes (or any relation-
ship matrix between them), and �

G
 is the genetic covari-

ance matrix between trials. Similarly, let us assume 
R = �

E

⨂
I
P
 where I

P
 is the identity matrix of dimension 

(1)y = X� + Zg+ e
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P and �
E
 is the error covariance matrix between trials. 

Note that R can be decomposed using a Kronecker product 
as the number of observations is the same for all trials.

Depending on the assumptions on �
G

 and �
E
 , several 

genomic prediction models can be defined from Eq. (1):

–	 standard GBLUP (SGBLUP) with �
G
=

⎡⎢⎢⎣

�2

G
.. �2

G

.. .. ..

�2

G
.. �2

G

⎤⎥⎥⎦
 and 

�
E
=

⎡⎢⎢⎣

�2

E
.. 0

.. .. ..

0 .. �2

E

⎤⎥⎥⎦
 which amounts to applying a standard 

GBLUP model to the overall experimental design,

–	 within-trial GBLUP (WGBLUP) with �
G
=

⎡
⎢⎢⎣

�2

G1

.. 0

.. .. ..

0 .. �2

GT

⎤
⎥⎥⎦
 

and �
E
=

⎡⎢⎢⎣

�2

E1

.. 0

.. .. ..

0 .. �2

ET

⎤⎥⎥⎦
 which amounts to applying a 

standard GBLUP model separately within each trial,

–	 multi-trial GBLUP (MGBLUP) with �
G
=

⎡⎢⎢⎣

�2

G1

.. �
G1,T

.. .. ..

�
GT ,1

.. �2

GT

⎤⎥⎥⎦
 

and �
E
=

⎡⎢⎢⎣

�2

E1

.. 0

.. .. ..

0 .. �2

ET

⎤⎥⎥⎦
,

where �2

G
 is the overall genetic variance, �2

Gt

 is the genetic 
variance in trial t, �

Gt,t′
 is the genetic covariance between 

trials t and t′ , �2

E
 is the overall error variance and �2

Et

 is the 

error variance in trial t. Let us also define �
t,t� =

�
Gt,t�

�
Gt
�
Gt�

 as 

the genetic correlation between trials t and t′.
For all models, the estimation of parameters was done 

using a Bayesian framework. SGBLUP was implemented 
using the R package "BGLR" (Pérez and de los Campos , 
2014) while WGBLUP and MGBLUP were implemented 
using the R package “MTM”1. Each inference consisted of 
10,000 MCMC iterations with a burn-in of 1,000 iterations 
and a thinning of 5 (i.e., 1 out of 5 samples were conserved 
to compute posterior means). The prediction of each trial-
specific genetic values was calculated as the sum of the esti-
mated trial-specific mean ( ̂�

t
 ) and the best linear unbiased 

predictor (BLUP) of g
it
 ( ̂g

it
 ). The BLUP of the complete 

vector g can be computed as follows:

w h e r e  M = 𝚺
−1 − 𝚺

−1X
(
XT

𝚺
−1X

)−1
XT

𝚺
−1  a n d 

� = ZGZT + R is the covariance matrix of y . The predic-
tion of the mean genetic value over trials was computed as 
the mean of predicted trial-specific genetic values.

ĝ = GZTMy,

Coefficient of determination

The CD (i.e., the expected model-based R2

G
 ) associated with 

the prediction of the genetic value of a genotype i in a trial 
t can be defined as:

Similarly, the CD associated with the prediction of the mean 
genetic value over all trials can be defined as:

The derivation of CD
it
 and CD

i. may also be done based 
on Henderson’s mixed model equations (Henderson 1973) 
when the dimension of � is larger than that of G , and/or 
using genetic correlations and variance ratios rather than 
the covariances matrices �

G
 and �

E
 (see Supplementary 

Note 1).
Three versions of CD

it
 and CD

i. were defined depending 
on the assumptions on �

G
 and �

E
 in the three genomic pre-

diction models previously presented:

–	 Standard CDS

i
 associated to SGBLUP model for which 

CD
S

i
= CD

S

it
= CD

S

it�
= CD

S

i.
 for all t, t′,

–	 Within-trial CDW

it
 and CDW

i.
 associated to WGBLUP for 

which CDW

i.
=

1

T

∑T

t=1
CD

W

it
,

–	 Multi-trial CDM

it
 and CDM

i.
 associated to MGBLUP for 

which CDM

i.
>

1

T

∑T

t=1
CD

M

it
 when there exists a pair of 

trial for which �
t,t′ ≠ 0.

Datasets

The first dataset considered in this study is a CIMMYT Ira-
nian wheat population of 2,374 wheat inbred lines that have 
been genotyped for 40K SNPs (Crossa et al. 2016b; Montes-
inos-López et al. 2018; Montesinos-López et al. 2019). This 
population has been evaluated for days to heading (DTH) 
and days to maturity (DTM) in a drought trial and a heat trial 
at the CIMMYT experiment station (near Ciudad Obregon, 
Sonora, Mexico) in 2010–2011. Each trial was a grid-check 
field design with three randomized checks distributed along 
rows and columns (Crossa et al. 2016b).

(2)
CD

it
= Cor

(
g
it
, ĝ

it

)2

CD
it
=

[
GZTMZG

]
it,it

G
it,it

,

(3)
CD

i. = Cor

�
1

T

∑T

t=1
g
it
,
1

T

∑T

t=1
ĝ
it

�2

CD
i. =

∑T

t=1

∑T

t�=1

�
GZTMZG

�
it,it�∑T

t=1

∑T

t�=1
G

it,it�

1  Available at https://​github.​com/​Quant​Gen/​MTM.

QuantGen/MTM
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The other datasets are two CIMMYT maize populations 
of 843 and 453 maize inbred lines that have been genotyped 
for 70K SNPs (Jarquin et al. 2020). The individuals of each 
population have been crossed to a different tester: T1 for the 
first population and T2 for the second population (T1 and T2 
are further used to name each population). Both populations 
have been evaluated for grain yield in three trials (Drought, 
Kiboko, and Kmega) in Kenya, each being an incomplete 
block design.

In both datasets, each genotype has one reference pheno-
typic value after adjusting for spatial effects within trials. 
The genomic relationship matrices were computed following 
VanRaden (2008) and scaled so that the mean of diagonal 
elements is equal to 1. Note that, for both datasets, genotype-
by-location and genotype-by-management interactions are 
probably confounded in the G × E interaction. However, the 
various levels of genetic correlation between trials obtained 
for these real traits make them valuable data to illustrate the 
methodology presented in this study.

Simulated traits

Using the wheat dataset only, traits were simulated for T = 2 
and T = 5 trials based on the MGBLUP model and the set 
of parameters indicated in Table 1. Different levels of G × E 
were simulated by adjusting the genetic correlation between 
trials: �

t,t� ∈ {0.2, 0.5, 0.8} . For a given simulated scenario 
(characterized by T and �

t,t′ ), the same �
t,t′ was considered 

between all pairs of trials. For each trial, genetic values were 
simulated as the sum between the trial-specific means �

t
 and 

a deviation specific to each trial-specific genotype effect g
it
 . 

The vectors of correlated deviations were generated using 
the product between the Cholesky decomposition of G 
(scaled with corresponding �

t,t′ and �2

Gt

 for all trials) and a 
vector of independent draws from a standard normal distri-
bution. For each simulated scenario, 30 traits were simulated 
as replicates.

For each simulated MET experimental design, pheno-
types were simulated by adding independent errors drawn 
from normal distributions with variance �2

Et

=
1−h2

t

h
2
t

�2

Gt

.

Comparison of genomic prediction models

Using the wheat dataset and simulated traits, the three 
genomic prediction models (SGBLUP, WGBLUP, and 
MGBLUP) were compared for their R2

G
 . The cross-validation 

(CV) procedure consisted of defining a TRS of 500 geno-
types observed once in each trial, with all other genotypes 
forming the test set (TS). For each of the 30 CV replicates, 
new phenotypes were generated (i.e., new errors were sam-
pled to generate phenotypes). The R2

G
 was then computed as 

the square correlation between predicted and true genetic 
values for both the trial-specific and the mean performances.

Link between the coefficient of determination 
and the genomic prediction reliability

Using the wheat dataset and simulated traits, the ability of 
CD

it
 and CD

i. criteria to forecast the R2

G
 was investigated 

based on the CV procedure presented in the previous subsec-
tion. To show how the CD associated with a genomic predic-
tion is connected to the observed R2

G
 , groups of predictions 

with homogeneous CD were defined according to the fol-
lowing procedure. For each CV sample and simulated trait, 
CD

it
 and CD

i. were computed for each genotype according 
to the design and the parameter estimates. Genotypes were 
then grouped according to sliding intervals of CD values: 
[x − 0.05, x + 0.05] where x ∈ {0.05, 0.10, ..., 0.90, 0.95} . 
When two genotypes showed a kinship coefficient superior 
to 0.2 within an interval, one out of the two genotypes was 
discarded. This deletion procedure was applied iteratively 
until only "unrelated" genotypes remained within each inter-
val. This procedure helped to limit the degree of correlation 
between the observations used to compute the observed R2

G
 . 

Also, intervals containing less than 50 values were discarded 
from the analysis. For each interval, the corresponding R2

G
 

was computed and compared to the reference value of the 
interval of x.

Evaluation and optimization of experimental 
designs

Using the wheat dataset and simulated traits, all CD criteria 
were evaluated for their ability to forecast the R2

G
 that can 

be achieved by different experimental designs. To do so, the 
mean of each type of CD ( CD

it
 for the trial-specific perfor-

mance and CD
i. for the mean performance) was computed 

over the set of genotypes to be predicted and compared to the 
R
2

G
 obtained for the same set using the MGBLUP model. The 

CV procedure to compare experimental designs consisted of 
separating the genotypes into a TS of 374 genotypes and a 
set of 2000 candidate genotypes from which the design of 
the experiment was defined.

Table 1   Trial-specific parameters considered to simulate traits for 
T = 2 and T = 5 trials

Note that for T = 2 trials, only the two first columns were used

Trial 1 2 3 4 5

Mean ( �
t
) 20 10 50 30 40

Genetic variance ( �2

Gt

) 1 2 3 4 5

Plot heritability ( h2
t
) 0.2 0.8 0.6 0.4 0.5
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Different MET experimental designs were considered that 
are illustrated in Fig. 1:

–	 Incomplete and unreplicated design (I) where a given 
genotype is only observed once in a single trial,

–	 Complete design with k replicates (Ck) where a given 
genotype is observed k times in each trial.

These MET experimental designs were compared to opti-
mized experimental designs (Opt) obtained by maximizing 
either the mean of CD

it
 over trials and genotypes, or the 

mean of CD
i. over genotypes. These criteria were computed 

over the total set of candidates, excluding the genotypes of 
the TS. To limit the size of the set of possible solutions, 
experimental designs with replicates within trials were not 
considered in the optimization procedure. All CD criteria 
were computed for contrasted configurations of variance 
parameters �

G
 and �

E
 (Table 2) that matched the differ-

ent genomic prediction models and CD types presented 
in previous subsections. The configuration S resumes to 
a standard univariate optimization based on the mean of 
CD

S

i
 . The configuration W corresponds to a multivariate 

optimization based on the mean of CDW

it
 (or equivalently 

CD
W

i.
 as CDW

i.
=

1

T

∑T

t=1
CD

W

it
 ). Note that the latter configu-

ration resumes applying a standard univariate optimization 
based on CDS

i
 within each trial. The last configuration M 

corresponds to a multivariate optimization based on CDM

it
 

or CDM

i.
 (not equivalent when there exists a pair of trials for 

which �
t,t′ ≠ 0).

The optimization procedure was implemented using the 
R-package "TrainSel"2 (Akdemir et al. 2021). The optimi-
zation algorithm implemented is a combination between a 
genetic algorithm (GA) and a simulated annealing algorithm 
(SAA). The algorithm is first initiated by a set of random 
designs. For each GA iteration, a population of 200 designs 
is generated from the elite set of designs obtained from the 
previous iteration. Such a step involves the recombination 
between elite designs and random mutations at the plot level. 
The best 20 designs are then selected according to the CD 

Fig. 1   Diagram illustrating the procedure to allocate candidate set 
genotypes to MET experimental designs (Opt, I, C1, and C2) and pre-
dict the genetic value of test set individuals. Genotypes are allocated 
at random for designs I, C1, and C2, while they are allocated using an 

optimization approach based on CD criteria for the Opt design. Note 
that optimized designs do not allow for a genotype to be replicated 
within each trial, but they do allow a genotype to be replicated across 
trials

Table 2   Trait parameters considered for the optimization according 
to the configuration: S, W or M. For a given configuration, the same 
variances ( �2

Gt

 and �2

Et

 ) were chosen for all trials, and the same genetic 
correlation ( �

t,t′ ) was chosen for all pairs of trials

Configuration S W M

Genetic variance ( �2

Gt

) 1 1 1
Error variance ( �2

Et

) 1 1 1
Genetic correlation ( �

t,t′) 1 0 0.5

2  Available at https://​github.​com/​TheRo​cinan​te-​lab/​Train​Sel

https://github.com/TheRocinante-lab/TrainSel
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Fig. 2   Comparison of the genomic prediction reliability ( R2

G
 or phe-

notype-based R2

Y
 ) of different genomic prediction models (SGBLUP, 

WGBLUP, and MGBLUP) using maize and wheat datasets. For all 
datasets, the average R2

G
 (or R2

Y
 ) was illustrated for the trial-specific 

performance and the mean performance of the test set: A the wheat 
dataset with simulated traits (two trials: h2

1
= 0.2 and h2

2
= 0.8 ), B the 

wheat dataset with phenology traits (two trials: Drought and Heat), 

and C the maize dataset with grain yield (three trials: Drought and 
Kiboko and Kmega). For simulated traits, the average R2

G
 was com-

puted over 30 simulated traits and 30 cross-validation replicates for 
each level of genetic correlation �

t,t′ , and ± the standard error of the 
30 CV replicates averaged over the 30 traits are indicated by a bar. 
For real traits, the average R2

Y
 is computed over 30 cross-validation 

replicates and ± the standard error is indicated by a bar
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criterion and go through additional SAA iterations to limit 
the risk of finding a local optimum. A total of 2,000 itera-
tions were considered for the GA and 10 iterations for the 
SAA at each iteration of the GA. Other parameters were 
default parameters. The convergence of the optimization 
algorithm was investigated by replicating the optimization 
procedure on the whole population 30 times.

Application to real traits

Using the wheat and maize datasets and real traits, genomic 
prediction models and experimental designs were compared 
using the same CV procedure as for simulated traits, except 
that the same phenotypes were used for all CV replicates. 
For the comparison of models and experimental designs 
using the maize datasets, TSs of 138 and 53 genotypes were 
defined in populations T1 and T2. All remaining individu-
als were used as TRS for the comparison of models or as 
candidates for the comparison of experimental designs (50 
plots per trial). The phenotype-based reliability of genomic 
prediction ( R2

Y
 ) was computed as the square correlation 

between predicted genetic values and the reference pheno-
typic values.

Data availability statement

The wheat dataset (genotypic and phenotypic data) is 
available at: http://​hdl.​handle.​net/​11529/​10548​141 (file: 

"Data_Wheat_Iranian_Set_3.RData.gz"). The maize data-
sets (genotypic and phenotypic data) are available at: http://​
hdl.​handle.​net/​11529/​10548​369. Supplemental figures and 
tables are available in: "Supplementary file 1". R code is 
provided to apply the MGBLUP model, compute all CD 
criteria, and apply the optimization: "R_code.R" and 
"R_functions.R".

Results

Genomic prediction models comparison

Based on the wheat dataset, the R2

G
 of three genomic predic-

tion models (SGBLUP, WGBLUP, and MGBLUP) was evalu-
ated using traits simulated under different scenarios defined 
by the number of trials and the levels of genetic correlation 
between trials (see Fig. 2A for T = 2 and Supplementary Fig. 
S1 for T = 5 ). The average R2

G
 of genomic prediction models 

were compared for both the trial-specific performance and 
the mean performance. For the mean performance, the aver-
age R2

G
 was very similar between models regardless of the 

genetic correlation between trials, even though a slight advan-
tage from using MGBLUP could often be observed (e.g., for 
�
t,t� = 0.5 , the average R2

G
 was 0.22, 0.23 and 0.24 for SGB-

LUP, WGBLUP and MGBLUP, respectively). Regarding the 
trial-specific performance, the ranking of models was vari-
able depending on the trial (each characterized by a specific 

Table 3   Comparison of simple experimental designs based on the new coefficient of determination (Coef. of Determination) criteria: CD
it
 and 

CD
i.

Each experimental design consisted of T = 2 trials of P = 2 plots each, with observed genotypes indicated by a cross (✓). The following parame-

ters were considered: K =

⎡⎢⎢⎣

1 0 0

0 1 0.5

0 0.5 1

⎤⎥⎥⎦
 , �

G
=

[
1 0.7

0.7 2

]
 and �

E
=

[
1 0

0 2

]
 , which resumes to consider a genetic correlation between trials 

�1,2 ≈ 0.5 and a trial-specific heritability of h2
t
= 0.5 for both trials. For this example, fixed effects were assumed to be known which resumes to 

replacing the M matrix by �−1 in Eq. (2, 3)

Ind. Trial-1 Trial-2 Coef. of Determination

CD
i1 CD

i2 CD
i.

A 1 ✓ ✓ ✓ ✓ 0.69 0.69 0.75
2 – – – – 0.00 0.00 0.00
3 – – – – 0.00 0.00 0.00

B 1 – – – – 0.00 0.00 0.00
2 ✓ ✓ ✓ ✓ 0.69 0.69 0.75
3 – – – – 0.17 0.17 0.19

C 1 ✓ – ✓ ✓ 0.54 0.68 0.69
2 – ✓ – – 0.50 0.12 0.33
3 – – – – 0.13 0.03 0.08

D 1 ✓ – ✓ – 0.53 0.53 0.60
2 – ✓ – – 0.51 0.22 0.39
3 – – – ✓ 0.22 0.51 0.46

http://hdl.handle.net/11529/10548141
http://hdl.handle.net/11529/10548369
http://hdl.handle.net/11529/10548369
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heritability h2
t
 ), and the level of genetic correlation between 

trials. In general, SBGLUP achieved a lower average R2

G
 

compared to other models, in particular for scenarios with a 
low genetic correlation between trials (e.g., for �

t,t� = 0.2 in 
trial-2, the average R2

G
 was 0.17, 0.27 and 0.27 for SGBLUP, 

WGBLUP and MGBLUP, respectively). For most scenarios, 
WGBLUP achieved a similar average R2

G
 compared to MGB-

LUP. A notable exception consisted of trials with a low herit-
ability and a high genetic correlation to other trials where both 
SGBLUP and MGBLUP outperformed WGBLUP (e.g., for 
�
t,t� = 0.8 in trial-1 characterized by h2

1
= 0.2 , the average R2

G
 

was 0.25, 0.21 and 0.26 for SGBLUP, WGBLUP and MGB-
LUP, respectively).

Using the wheat dataset and real phenology traits, the 
phenotype-based R2

Y
 of the same three models was com-

pared (Fig. 2B). As for simulated traits, the average R2

Y
 for 

the mean performance was very similar between models for 
both traits. Regarding the trial-specific performance, the R2

Y
 

was similar between MGBLUP and WGBLUP for all trials, 
while SGBLUP achieved a lower average R2

Y
 (e.g., for DTH 

in the drought trial, the average R2

Y
 was 0.42, 0.47, and 0.47 

for SGBLUP, WGBLUP, and MGBLUP, respectively). The 
same observations could be made using the two maize data-
sets evaluated for grain yield (Fig. 2C).

New CD criteria ‑ simple example

The properties of the new CD criteria ( CDM

it
 and CDM

i.
 ) 

were illustrated based on a simple example (Table 3). 

Different experimental designs with two trials ( T = 2 ), 
two plots per trial ( P = 2 ), and three genotypes (only 
genotypes 2 and 3 are related to each other) were con-
sidered. For design A, only individual 1 is observed in 
both trials, leading to a high CD associated with both 
the trial-specific performances ( CD1t ) and the mean 
performance ( CD1. ). Conversely, null CD

it
 and CD

i. are 
obtained for genotypes 2 and 3, as none of them are 
observed in any trials and none of them are related to 
genotype 1. A higher CD1. compared to the mean of CD1t 
results here from the positive covariance between trials. 
For design B, only genotype 2 is observed in both trials, 
resulting in high CD

it
 and CD

i. for genotype 2 but null for 
genotype 1. As genotype 3 is related to genotype 2, both 
CD3t and CD3. takes small but non-null values. For design 
C, genotypes 1 and 2 are observed in trial-1, while only 
genotype 1 is observed in trial-2. As a result, genotype 
2 has a high CD21 but a low CD22 . Because genotype 3 
is related to genotype 2, CD31 is small but non-null, and 
because of the positive covariance between trials, CD32 
is very small but also non-null. The last design D is 
one of the possible optimal designs as it allows for the 
highest average CD

it
 or CD

i. over the three genotypes. 
The higher CD

i. obtained for genotype 3 compared to 
genotype 2 results from the larger genetic variance in 
trial-2 compared to trial-1. Note that another optimal 
design would consist of switching genotypes 2 and 3 
between trial-1 and trial-2.

Fig. 3   Observed genomic prediction reliability ( R2

G
 ) against expected 

R
2

G
 for 30 simulated traits ( �

t,t� = 0.5 and T = 2 with different h2
t
 , see 

Table 1) and 30 cross-validation replicates for the training set (TRS) 
and the test set (TS). Expected R2

G
 is based on CD

it
 for trial-specific 

performances and CD
i. for the mean performance. Individual CD 

values are clustered into groups of values with similar CD using a 
sliding window approach and the observed R2

G
 of the interval is then 

computed based on genomic predictions obtained with MGBLUP
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Fig. 4   Observed genomic prediction reliability ( R2

G
 ) obtained with 

MGBLUP against expected R2

G
 of the test set according to the experi-

mental design: complete with k replicates (Ck), incomplete and 
unreplicated (I), and optimized based on CD

it
 with the M configura-

tion (Opt, see Table 2), for 30 simulated traits ( �
t,t� = 0.5 and T = 2 , 

with different h2
t
 , see Table 1) and 30 design replicates. Expected R2

G
 

is based on the mean over test set individuals of CD
it
 for the trial-

specific performances and CD
i. for the mean performance. For a given 

type of design, the average observed R2

G
 against the average expected 

R
2

G
 is represented by a big dot

Fig. 5   Average phenotype-based genomic prediction reliability ( R2

Y
 ) 

of  a days-to-heading (DTH) and days-to-maturity (DTM)  for the 
wheat dataset and b grain yield for the two maize populations (T1 and 
T2), obtained with MGBLUP of the trial-specific and the mean per-
formance of the test set according to the experimental design: com-

plete with one replicate (C1), incomplete and unreplicated (I) and 
optimized based on CD

it
 with the M configuration (Opt, see Table 2). 

The average R2

G
 was computed over 30 design replicates and ± the 

standard error is indicated by a bar
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Expected and observed genomic prediction 
reliability

The ability of the new CD criteria to forecast the R2

G
 of 

MGBLUP was investigated based on the CV replicates 
obtained for simulated traits with �

t,t� = 0.5 (see Fig. 3 for 
T = 2 and Supplementary Fig. S2 for T = 5 ). The expected 
R
2

G
 based on CD

it
 and CD

i. was generally a good indication of 
the level of observed R2

G
 for both the TRS and the TS. A sub-

stantial variability could be observed between the expected 
and observed R2

G
 , especially for the TS.

For real traits, the expected R2

G
 was compared to the 

observed phenotype-based R2

Y
 jointly for DTH and DTM 

(see Fig. S3). Those quantities are not expected to be equal, 
but a clear trend could be observed in that the expected R2

G
 

was correlated to the observed R2

Y
.

Comparison and optimization of experimental 
designs

The ability of the new CD criteria to forecast the R2

G
 

achieved by standard experimental designs was investigated 
using MGBLUP and simulated traits (see Fig. 4 for T = 2 
and Supplementary Fig. S4 for T = 5 using �

t,t� = 0.5 ). The 
R
2

G
 achieved by complete designs with replicates (Ck) were 

in general lower with an increasing number of replicates. 
The R2

G
 achieved by the incomplete design (I) was either 

comparable to that of C1 for T = 2 or higher than that of 
C1 for T = 5 . On average, the expected R2

G
 based on the 

mean of CD
it
 or CD

i. was a good indication of the level of 
observed R2

G
.

Those standard experimental designs were compared to 
optimized experimental designs obtained based on CD

it
 or 

CD
i. with the contrasted parameter configurations S, W and 

M presented in Table 2. The algorithm did not converge 
as optimized designs were not identical between different 
initializations (Supplementary Table S1). However, each 
criterion clearly reached a plateau indicating very similar 
expected R2

G
 between design replicates (Supplementary Fig 

S5). The optimization configuration had little impact on the 
observed R2

G
 of experimental designs for simulated traits 

regardless of the simulated genetic correlation between tri-
als, although designs optimized with configuration S gener-
ally achieved the lowest R2

G
 (see Supplementary Table S2). 

For the configuration M, using the mean of CDM

i.
 as a cri-

terion is different from using the mean of CDM

it
 , but did not 

allow for any improvement. Optimized designs based on CD
it
 

with configuration M were compared to standard experimen-
tal designs and showed an average improvement in expected 
R
2

G
 that translated into an average gain in observed R2

G
 (for 

�
t,t� = 0.5 , see Fig. 4 for T = 2 and Supplementary Fig. S4 

for T = 5).

For real traits in all datasets, optimized experimental 
designs were obtained based on CD

it
 with the configura-

tion M generally allowed for higher phenotype-based R2

Y
 

compared to standard designs, both for the trial-specific 
performance and the mean performance (Fig. 5). Like for 
simulated traits, the impact of the optimization configura-
tion was limited for both traits, except for designs optimized 
with configuration S, which generally achieved the lowest 
R
2

Y
 (see Supplementary Table S3 for the wheat dataset and 

Supplementary Table S4 for the maize datasets).

Discussion

Accounting for G × E in genomic prediction

In METs, G × E can be seen as resulting from QTL showing 
specific allele effects depending on the environmental condi-
tions. This specificity of QTL allele effects results in genetic 
values that are also specific to environmental conditions. 
The use of a multivariate mixed model with an unstruc-
tured genetic covariance matrix between trials (here �

G
 ) is 

a flexible approach to capture G × E in genomic prediction. 
The modeling of trial-specific genetic variances enables to 
account for differences in genetic variability between trials. 
It may result from the convergence/divergence of genetic 
values according to environmental gradients (Malosetti 
et al. 2013). In addition, modeling the genetic correlations 
between trials can take into account differences in geno-
type ranking between trials. This phenomenon is commonly 
referred to as crossovers in the G × E literature (Malosetti 
et al. 2013). Note that the advantage of an unstructured mod-
eling of �

G
 is illustrated here for a small number of trials 

(from T = 2 to T = 5 ) compared to what can be observed in 
large METs. The main drawback of this modeling is the dif-
ficulty associated with estimating parameters correctly when 
the number of trials becomes large (Burgueño et al. 2012). 
For larger datasets, factor analysis approaches can help to 
structure the covariance matrix �

G
 and reduce the number of 

parameters to estimate (Smith et al. 2001; de los Campos and 
Gianola , 2007). Compared to MGBLUP, applying a GBLUP 
model implies either (i) considering a common genetic vari-
ance for all trials and a genetic correlation �

t,t� = 1 between 
trials when applied to the whole design (here SGBLUP), 
or (ii) considering a specific genetic variance in each trial 
but with a genetic correlation �

t,t� = 0 between trials when 
applied separately in each trial (here WGBLUP).

In our study, accounting for G × E using MGBLUP was 
more beneficial for the prediction of trial-specific perfor-
mances compared to the mean performance over trials. 
When the set of trials represents the targeted environ-
ment, the mean performance is the variable of interest for 
a breeder. However, on a broader scale, breeding programs 
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are divided into agroclimatic zones (AGZs). In this con-
text, it is possible to apply genomic prediction jointly to all 
AGZs and focus on the prediction specific to each AGZ. 
For environments with low heritability, this joint modeling 
helps to improve the accuracy of genomic prediction using 
the information from correlated environments, as shown 
here based on simulated traits (see the comparison between 
WGBLUP and MGBLUP for trial-1 and �

t,t� = 0.8 in Fig. 2 
and Fig. S1). For the wheat dataset, despite a significant 
genetic correlation between drought and heat trials, no such 
gains could be observed for DTH and DTM which could be 
explained by the relatively high plot heritabilities obtained 
for both traits in both trials (Supplementary Table S5). The 
absence of gains observed for both maize datasets probably 
resulted from the low genetic correlations between all trial 
pairs (Supplementary Table S6). However, as shown with 
simulations and real traits, MGBLUP always enabled the 
highest (or close to the highest) R2

G
 , and is thus our recom-

mended model to apply genomic prediction for a wide range 
of G × E scenarios.

Forecasting the reliability of genomic prediction 
using CD

When applying genomic prediction in METs with G × E, the 
precision with which each genetic value is predicted may be 
highly variable depending on the genotype. For instance, if 
one aims to predict the genetic value of a genotype in a given 
trial, the precision will not only depend on the number of 
observations for this genotype in the targeted trial and corre-
lated trials, but also on the number of observations for other 
related genotypes in those trials. In unbalanced experimental 
designs with complex pedigree relationships between geno-
types, this heterogeneity in R2

G
 can be very high. A breeder 

can be interested in assessing the R2

G
 associated with each 

genotype as it will have an impact on the selection (e.g., a 
genotype associated with a low R2

G
 is not likely to be selected 

using truncation selection).
As MGBLUP is a multivariate linear mixed model, it is 

possible to derive CD criteria that can be used to forecast 
and assess the R2

G
 prior to any validation. Our CD

it
 criterion 

quantifies the expected R2

G
 associated with the prediction 

of a genetic value in a given trial. It consists of the adapta-
tion of the criterion originally presented by Wientjes et al. 
(2015) for genomic prediction in structured populations, or 
Ben-Sadoun et al. (2020) for multi-trait genomic prediction, 
to the context of genomic prediction in METs with G × E. 
In addition, we propose a new indicator ( CD

i. ) that quanti-
fies the expected R2

G
 associated with the prediction of the 

mean genetic value of a genotype over a set of trials. When 
genetic values are correlated between trials, the precision 
with which the mean genetic value is predicted is superior 
to the mean of the precision achieved in each trial, and such 

a gain in precision is accounted for by CD
i. (see Table 3 for 

an illustration).
In our study, we showed based on simulations that the 

expected R2

G
 of the prediction of both the trials-specific per-

formance and the mean performance based on CD
it
 and CD

i. 
were good indications of the level of observed R2

G
 . While 

this is true when averaged over a large number of traits, the 
expected R2

G
 based on CD criteria, may poorly forecast the 

R
2

G
 for a specific trait (Rabier et al. 2016; Schopp et al. 2017; 

Rincent et al. 2017a; Rio et al. 2019). This is because CD 
only accounts for genetic and error variances that are not suf-
ficient to reflect the variability in trait genetic architectures 
(e.g., number, genome location, and effect size of QTL). An 
additional source of error consists of the differences between 
the true genomic relationship matrix based on QTL and the 
one estimated based on SNPs, as previously pointed by God-
dard et al. (2011). In our simulations, where an infinitesimal 
model was assumed, the variability of observed R2

G
 for a 

given level of expected R2

G
 (see Fig. 3 and Supplementary 

Fig. S2) could also be explained by (i) the uncertainty on 
�

G
 and �

E
 estimates, (ii) the uncertainty on the correlation 

estimate due to limited sample size, and (iii) the lack of 
independence between the observations used to compute the 
correlation due to relatedness. The latter is of high impor-
tance as it tells us that CD criteria may poorly forecast the 
observed R2

G
 when complex pedigree relationships are found 

in the TS. An extreme example would be a TS of genotypes 
that all have a high CD but are strongly related to each other 
so that it is difficult to predict which of them performs the 
best. An alternative consists of using generalized CD crite-
ria associated with contrasts between genetic values (Laloë 
1993; Rincent et al. 2012, 2017a).

Optimizing multi‑environment trials experimental 
designs using CD

While the cost of genotyping is becoming cheaper and 
should continue to decrease over the next decades, the cost 
of phenotyping is likely to remain expensive. These costs 
translate into constraints on the number of plots to which 
genotypes can be allocated. It is therefore important to select 
the genotypes whose evaluation will allow accurate predic-
tion of the entire breeding germplasm available.

In genomic prediction, phenotypic observations for a 
genotype can help to predict the genetic value of other 
genotypes to which it is related. In this context, it is often 
more favorable not to replicate genotypes within and 
across trials, but to observe as many genotypes as pos-
sible in the overall design, as illustrated here (see Fig. 4 
and Supplementary Fig. S4) and as previously shown by 
Endelman et al. (2014), Moehring et al. (2014), González-
Barrios et al. (2019), Jarquin et al. (2020). A common 
related statement is that one should aim at replicating 
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alleles rather than genotypes so that all QTL effects can be 
well estimated to accurately predict genetic values (Lorenz 
2013). Interestingly, the interest of limiting replicates can 
be predicted using our new CD criteria averaged over TS 
genotypes (see Fig. 4 and Supplementary Fig. S4). These 
criteria can even be used to rank designs according to their 
expected R2

G
 , which on average was shown to be consistent 

with their ranking according to the observed R2

G
.

Thanks to this consistency, optimization criteria based 
on CD

it
 or CD

i. can be used to optimize experimental 
designs that allow for higher R2

G
 compared to standard 

designs where genotypes are selected randomly from the 
set of candidates. The most difficult parts of this optimi-
zation procedure consist of (i) the choice of an efficient 
optimization algorithm and (ii) the choice of parameters 
�

G
 and �

E
 to be used in CD-based criteria. For the opti-

mization algorithm, we have opted for an algorithm imple-
mented in the R-package "TrainSel" that is a combination 
of GA and SAA algorithms that allows one to efficiently 
prospect the set of solutions while preventing local opti-
mums. Regarding the choice of parameters, our simula-
tion results show that experimental designs obtained from 
the contrasted genetic configuration S, W, and M were 
similar in terms of R2

G
 , regardless of the level of genetic 

correlation between trials. It suggests that the choice of 
trait parameters has a relatively low impact on the opti-
mization procedure, as previously shown for univariate 
optimizations based on CD with the impact of the herit-
ability parameter (Rincent et al. 2012). However, the S 
configuration generally led to the lowest R2

G
 for simulated 

traits, and to a larger extent the lowest R2

Y
 for real traits. 

Assuming perfectly correlated genetic values between tri-
als may thus be a too simplistic hypothesis when G × E 
is expected in the experiment, and supports the use of new 
CD criteria (with configuration W or M depending on the 
importance of G ×E). While the CD is associated with the 
mean performance ( CD

i. ) is valuable to assess the R2

G
 for 

an experiment, designs optimized based on this criterion 
with the M configuration did not allow for improvement 
in R2

G
 regarding the mean performance (Supplementary 

Table S2, S3 and S4). We thus recommend using CD
it
 

as an optimization criterion as it is less computationally 
demanding.

In this study, we chose a conservative approach in that 
we computed the optimization criterion on all the candi-
dates, excluding the TS used for validation. This corresponds 
to a scenario where we aim at checking the ability of our 
experimental design to predict another sample from the same 
population as one of the candidates. When the target popula-
tion is different from the population of candidates, one can 
compute directly the criterion on the TS, making a targeted 
optimization as proposed by Akdemir and Isidro-Sánchez 
(2019).

Conclusion

In this study, we demonstrated the value of a genomic pre-
diction model that accounts for G × E by modeling the genetic 
covariance between trials. We derived new CD criteria from 
this model and showed how they can help to assess and fore-
cast the R2

G
 associated with the prediction of genetic values 

for both the trial-specific and the mean performance. We 
also showed how MET experimental designs could be opti-
mized based on these new CD criteria and enabled higher 
R
2

G
 compared to standard experimental designs.
From a plant breeding perspective, we propose the fol-

lowing guidelines when setting up and analysing a MET 
experiment with genomic information available: (i) analyse 
data from trials jointly by accounting for G × E in the mod-
eling, (ii) use indicators like CD to assess the reliability of 
each prediction before any validation, (iii) limit the replica-
tion of genotypes within trials and between trials (provided 
that genotypes are carefully allocated between trials), and 
(iv) allocate genotypes to trials using genomic information 
as well as prior information on the level of G × E and herit-
ability (e.g., using the procedure described in this study). 
Note that the latter guideline may be more adapted to the 
context of screening within a large set of individuals rather 
than the fine characterization of a small set of individuals 
for which several observations in all trials remain needed.

Appendix

Alternative CD derivations

An equivalent derivation of CD
it
 to the one presented in Eq. 

(2) can be obtained following Henderson’s mixed model 
equations:

where M2 = R−1 − R−1X
(
XTR−1X

)
XTR−1 . This alterna-

tive derivation can be more efficiently calculated when the 
dimension of G is smaller than that of � , due to the size of 
matrices to be inverted.

Similarly, an equivalent derivation of CD
i. to the one pre-

sented in Eq. (3) can be obtained:

All CD formulas can also be considered using variance 
ratios and genetic correlations between trials where 

CD
it
=

[
G −

(
ZTM2Z + G−1

)−1]
it,it

G
it,it

,

CD
i. =

∑T

t=1

∑T

t�=1

�
G −

�
ZTM2Z + G−1

�−1�
it,it∑T

t=1

∑T

t�=1
G

it,it
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G = �
G

⨂
K  i s  r ep laced  by  G̃ = �

⨂
K  w i t h 

� =

⎡⎢⎢⎣

1 .. �1,T
.. .. ..

�
T ,1 .. 1

⎤⎥⎥⎦
 being the matrix of genetic correlations 

between trials, and R = �
E

⨂
I
P
 is replaced by R̃ = �

⨂
I
P
 

with � =

⎡⎢⎢⎣

�1 .. 0

.. .. ..

0 .. �
T

⎤⎥⎥⎦
 being the matrix of variance ratios 

� =
�2

Et

�2

Gt

 . The latter formalism may be more convenient than 

using directly error and genetic covariances when one aims 
to forecast the R2

G
 or optimize the experimental design based 

on the level of heritability and the importance of G ×E.
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