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Abstract
We consider the analysis of count data in which the observed frequency of zero counts is

unusually large, typically with respect to the Poisson distribution. We focus on two alterna-
tive modelling approaches: Over-Dispersion (OD) models, and Zero-Inflation (ZI) models,
both of which can be seen as generalisations of the Poisson distribution; we refer to these
as Implicit and Explicit ZI models, respectively. Although sometimes seen as competing
approaches, they can be complementary; OD is a consequence of ZI modelling, and ZI is
a by-product of OD modelling. The central objective in such analyses is often concerned
with inference on the effect of covariates on the mean, in light of the apparent excess of
zeros in the counts. Typically the modelling of the excess zeros per se is a secondary objec-
tive and there are choices to be made between, and within, the OD and ZI approaches. The
contribution of this paper is primarily conceptual. We contrast, descriptively, the impact on
zeros of the two approaches. We further offer a novel descriptive characterisation of alter-
native ZI models, including the classic hurdle and mixture models, by providing a unifying
theoretical framework for their comparison. This in turn leads to a novel and technically
simpler ZI model. We develop the underlying theory for univariate counts and touch on its
implication for multivariate count data.

Keywords: hurdle; over-dispersion; zero altered; zero deflation; zero inflation

1 Introduction

Regression analysis of count data arises in many fields, including agriculture (Blasco-Moreno

et al., 2019), ecology (Mcmahon et al., 2017), climatology (Salter-Townshend & Haslett, 2012),
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finance (Benson & Friel, 2017), and pharma (Min & Agresti, 2005). The simplest modelling

framework for such analysis is generalised linear modelling using the Poisson and Negative

Binomial (NB) families. In regression the mean parameter is related, via a link function, to

a linear combination of covariates. In the NB context parameters may also be related to the

dispersion parameter.

It is common in such data to encounter an apparent excess of zeros, often with respect to the

Poisson and even with respect to the NB. A generic challenge is thus regression of count data

in the presence of excess zeros. The mechanism by which these zeros arise may not always be

a key focus of the analysis, yet the choice of model for this mechanism may have repercussions

on other parameters that are of concern. Our focus is on the alternative models. In common

with much of the literature we use the term Zero-Inflated (ZI) rather broadly to refer to several

alternatives, although some models necessarily include Zero-Deflation.

The seminal papers are those of Mullahy (1986), who introduced the ‘hurdle’ models, and

of Lambert (1992), who proposed a mixture model for the zeros. Both can be seen as one-

parameter extensions of a simpler base distribution, in which the Poisson (or NB) probability of

zero is ‘altered’. Over the following three decades a very large literature has developed (at the

date of writing, about 1900 papers include the terms ‘zero-inflated’ or ‘hurdle’ in the title; more

than 36,000 include the term somewhere in the paper). The issue of dealing with an excess of

zeros has become deeply embedded in the methodology of count data regression.

A complicated nomenclature has developed. Very many authors regard the term ZI to be

coterminous with the specific model proposed by Lambert; but other terms used are Zero-

Modified, (Dietz & Böhning, 2000), Zero Altered (Yee, 2015; Rigby et al., 2005), two-part

(Pohlmeier & Ulrich, 1995), and conditional (Welsh et al., 1996). Various re-parameterisations

exist, such as marginal ZI models in which the ZI and Poisson components are merged into a

single mean parameter (Martin & Hall, 2017; Long et al., 2014). Generically we refer to these
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as explicit ZI models. Surprisingly, however, there have been relatively few review papers on

the topic in the statistical literature (though see Ridout et al., 1998; Warton, 2005; Deng & Paul,

2005; Hilbe & Greene, 2007; Perumean-Chaney et al., 2013; Farewell et al., 2017).

A second approach is via distributions that are Over-Dispersed (OD) with respect to the

Poisson, the best known example of which is the Negative Binomial. This also is a one-

parameter extension of the Poisson. This approach we describe as implicit ZI, for the ZI is

a by-product of a wider focus on the mean/variance relationship; in the Poisson distribution the

mean and variance are equal. They also can be said to ‘alter’ the probability of a zero from its

Poisson ‘base’. For brevity, below we sometimes refer to the implicit and explicit approaches

as OD and ZI respectively.

These two approaches may be combined; zero-inflating the Negative Binomial is then a

two-parameter extension of the Poisson. We do not pursue in any detail the many other over-

dispersed distributions that have been proposed in recent years, nor their zero-inflated variants,

but we remark that this is a rapidly growing literature.

But others (eg Warton, 2005) see them as competitors. In particular, Warton (2005) pro-

vided comparisons between different implicit and explicit ZI models fitted to a total of 1672

abundance variables across 20 multivariate datasets. He argued there is little or no evidence for

the need to explicitly model excess zeros; the wide class of over-dispersed models is sufficient.

However, while his views have not been explicitly rebutted, there are some examples in the lit-

erature where explicit ZI is preferred to over-dispersion (see eg Welsh et al., 1996; Hall, 2000)

and others where ZI and over-dispersion are used together, typically in a zero-inflated negative

binomial (ZINB) model (Jansakul & Hinde, 2008).

This paper examines both approaches with a view to gaining new insights on their different

properties. We show that the link between ZI and OD models is complex; both approaches

induce specific versions of each other. These insights are primarily theoretical. In particular
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they suggest reasons why it will often in practice be very difficult to distinguish, from data,

which of the alternative models will be ‘best’ in any useful sense. These insights lead to a new

form of ZI which we term ‘Logistic ZI’.

Some argue that the essential difference between these approaches is that there are situations

where at least some of the zeros (and only the zeros) arise from a process that differs essentially

from that which generates the counts, including counts of zero. This prescribes an explicit ZI

approach, in which some of the observed zeros are deemed to reflect an unreported structural

variable; they may even be deemed ‘false’. But, although not strictly necessary, this concept

of true and false zeros may impose a burden on some users, for an over-dispersed distribution

can often achieve the same descriptive effect; see Blasco-Moreno et al. (2019) and Martin et al.

(2005). By contrast, OD distributions can lead to excess low counts such as zero. Zeros are no

longer special: low counts may be inflated with respect to the Poisson. The key distinction is

the upper tail of OD distributions is also inflated with respect to the Poisson.

Our fundamental concern in this review is with concepts, rather than with, say, algorithms,

power and tests. We defer consideration of vector counts, which introduce new challenges, but

not new concepts. We motivate the paper in Section 2, by referring to a concrete example.

We then introduce our general approach including our new type of ZI, in Section 3. Section 4

examines, from the same perspective, the implicit ZI induced by the Negative Binomial. Our

concluding thoughts are in Section 5.

2 Motivating example

In this section we use a simple dataset to illustrate a brief and conventional overview of some

models that deal explicitly or implicitly with excess zeros in the context of regression. Specif-

ically, we adopt the classic nomenclature and motivation of the models, but defer a discussion

of theoretical aspects until Sections 3 and 4.
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The datatset is highly structured, permitting the fitting of saturated models for the mean

structure. It also has, perhaps somewhat atypically, extensive replication allowing the calcula-

tion of natural and non-parametric estimates of, not just, the means but also of the probability

of zeros. This allows us to see clearly that a basic Poisson regression model deals inadequately

with the incidence of zero counts. It also allows us to evaluate the different explicit approaches

to the handling of the excess zeros in terms of both the fitting of the probabilities of zeros and

the fitting of the means. Both of these are challenging in more general regression settings. But

we argue in this paper that the opaqueness, most especially of explicit ZI modelling, is a con-

tributory factor. In the same way we can study implicit ZI models, and here we focus on two

versions of the negative binomial regression model as examples of over-dispersed count models.

We consider the Trajan apple data of Ridout et al. (1998). The response variable is the

number of roots produced by 270 micropropagated shoots of the apple cultivar Trajan under

two different photoperiods (8 and 16 hours) and four different concentrations of the growth

hormone cytokinin BAP in a completely randomised design with multiple replication at each

of the settings. Here we treat both explanatory variables as factors and restrict attention to the

full interaction model for the eight different photoperiod by hormone settings, so in essence

fitting the frequency distribution of counts for the replicates at each setting. We refer to these

eight distinct settings as C(k), k = 1, . . . , 8 and index any associated model parameters and

data summaries in the same way; writing ȳ(k) and p(k)0 , k = 1, . . . , 8, for the cell means and

zero-proportions. Our attention here focusses on the fit of the various models in terms of both

the overall means and the zero proportions for each of the eight combinations by comparing the

model fitted values with the sample values {ȳ(k), p(k)0 }; these are displayed in Figure 1. Each of

the seven different models shown in Figure 1 are explained below, and we encourage the reader

to read this section whilst repeatedly returning to Figure 1 for reference.

We start with the basic Poisson model with πy(λ) = λye−λ/y!, y ∈ N. Fitting a Poisson
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log-linear full interaction model corresponds to estimating a separate parameter λ(k) for each of

the settings C(k) with the cell means ȳ(k) being the maximum likelihood estimators. Effectively

the data are treated as iid, within each cell. So here the observed cell means are reproduced

by the fitted model (see Figure 1(a), bottom-left panel), which can be viewed as a consequence

of the simple Exponential Family form of the Poisson. For the zero proportions the maximum

likelihood estimators are π̂(k)
0 = exp(−λ̂(k)) = exp(−ȳ(k)) are not unbiased, unlike the cell

zero-proportions p(k)0 which are non-parametric and unbiased estimators of π(k)
0 . The compari-

son of these in Figure 1(a) shows the a priori evidence of excess zeros compared to a Poisson

model, especially for the 16 hour photoperiod where there are many observed zeros along with

some large non-zero counts. This motivates the need to explore ZI extensions of the basic

Poisson model.

2.1 Explicit ZI extensions

Here we revisit the two classical approaches: the hurdle model of Mullahy, in two variants, and

the mixture model of Lambert. In Section 3 these will be referred to as types A, B and C, and

a fourth Type D will be introduced. Results from all four are presented in Figure 1(b) where

comparisons are made with the aid of the non-parametric estimates {ȳ(k), p(k)0 }.

We denote these explicit ZI extensions by π̃y(λ, γ), where here we focus on one parameter

extensions of the underlying Poisson base model πy(λ). Section 3 will provide a unified treat-

ment of the way that γ can be seen as parameterising different types of explicit ZI. In the brief

overview below of the classical treatment of hurdle and mixture models, γ implicitly parame-

terises terms specific to these models. The key step is that π̃y arises from a specific alteration

of the Poisson π0 to π̃0; and that, for y > 0, π̃y = ρπy where ρ re-normalises to ensure that∑
y π̃y = 1. So for y > 0 the modified distribution retains the same structure as the Poisson for

successive terms, i.e. π̃y+1/π̃y = πy+1/πy.
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The first class of ZI extensions that we consider are the Hurdle models of Mullahy (1986).

The basic idea of the hurdle model is that the zeros and non-zeros arise from separate processes,

allowing the zeros to be modelled as binary outcomes and the non-zero counts as outcomes

from a zero-truncated count distribution. The hurdle name comes from the idea that the binary

process for the zero/non-zero values essentially models the probability of crossing over the

hurdle from zero to non-zero counts. Then conditional on having crossed over this hurdle the

model is a standard count data model for the non-zero counts, typically taken to be a zero-

truncated count model. The simplest hurdle model is one in which the zeros are modelled as

coming from a Bernoulli distribution with a constant probability π̃0 = π̃0(γ) and the non-zero

counts coming from a zero-truncated Poisson distribution; we refer to this in Section 3 as Type

A. The zero-truncated Poisson distribution has mean E[Y |Y > 0] = λ
(1−e−λ) . In our notation

this hurdle model has the form

π̃y(λ, γ) =

π̃0 if y = 0
(1− π̃0)
(1− e−λ)

πy(λ) if y > 0
(1)

with the re-normalising ρ = (1−π̃0)
(1−e−λ) and E[Y ] = (1−π̃0)

(1−e−λ)λ = ρλ.

Fitting this simple model to the Trajan data with a single additional ZI parameter, the com-

mon π̃0, with separate parameters λ(k) for each cell C(k), the overall proportion of observed

zeros (0.237) is necessarily reproduced by the fitted model. For under this model, the indica-

tor variable E[I{Y = 0}] = π̃0 irrespective of cell and is estimated by the overall proportion

of zeros p0. But as the eight individual cells have different numbers of zero observations,

π̃0 6= p
(k)
0 in general; we elaborate in Section 3. As the zero-truncated Poisson distribution is

in the Exponential Family, the fitted model reproduces the means of the zero-truncated data;

thus E[Y (k)|Y (k) > 0] is estimated by the truncated mean ȳ
(k)
+ for each cell, and hence the

overall fitted values, (1 − ˆ̃π0)ȳ
(k)
+ = (1 − p0)ȳ(k)+ , differ from the sample values ȳ(k) as seen in

Figure 1(b).
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More general hurdle models, in particular where π̃0 is itself modelled via covariates in a

regression context, involve specifying a particular form for the binary model. In addition to any

specific linear predictor, this specification includes the choice of a link function for the zero

probability π̃0, or equivalently for the probability of non-zero counts π̃+ = 1 − π̃0, where π̃+

can be thought of as the probability of crossing the hurdle. The link function can be taken as

any standard binary/binomial model link but can also be motivated by considering the zeros

to have come from a particular (truncated) count distribution; for example, Mullahy (1986)

considers the use of the Poisson distribution leading to a complementary log-log link for the

hurdle crossing probability π̃+ .

In the general form of Mullahy’s Poisson-hurdle the zero and non-zero counts are both

assumed to come from Poisson distributions but with different (modelled) parameters. A sim-

plified version of this, with a single additional ZI parameter, takes the Poisson parameters as

proportional with π̃0(λ, α) = π0(αλ) with α < 1 for zero-inflation and where α = 1 reduces

to a common Poisson model for zero and non-zero-counts (to fit in with our general notation

for π̃0(λ, γ) in Section 3 we take α = eγ) ; we refer to this as Type B. In this shared parameter

version of the hurdle model we no longer have the separation of the zero and non-zero processes

and consequent simplification of the estimation. Here both zero and non-zero counts contribute

to the estimation of the regression parameters and not surprisingly this model does better than

Type A at reproducing the overall means and also manages to pick up some of the differences

in zero proportions.

The other broad class of explicit ZI approaches are the zero-inflated mixture models, exem-

plified by the zero-inflated Poisson (ZIP) model of Lambert (1992). Here the zero probability is

extended to a mixture of the base zero probability and degenerate point mass at zero, where the

mixing probability provides the additional parameter and corresponds to the specific inflation

of the zero probability. In the usual mixture-like notation we have π̃0(λ, q) = q + (1 − q)π0
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for 0 ≤ q ≤ 1, with ρ = 1 − q. This can be written in our generic extended form π̃0(λ, γ) by

parameterizing q as a function of γ; specifically, for reasons that will become clear in Section 3,

we take q = 1 − eγ giving γ = log(1 − q). We refer to this as Type C. For the Trajan data we

use a constant mixing probability q (equivalently constant γ) and separate λ(k) values for each

of the eight classes C(k). From Figure 1(b) we see that here the results are very similar to those

for Type A, this is because the cell means are generally large and so the base Poisson model

zero probabilities, exp(−λ̂(k)), are small and contribute little to the fitted zero probabilities that

are dominated by the estimated constant zero inflation q̂.

As a further novel explicit ZI model in Section 3 we introduce Type D, where the alteration

of the zero probability is made through its odds-ratio. As discussed in Section 3, the resulting

extended distribution is in the Exponential Family and for the Trajan data interaction model with

the eight distinct λ(k) and a single ZI parameter the sufficient statistics are the individual cell

means, ȳ(k), and the overall proportion of zero counts. Consequently, the maximum likelihood

fitted model reproduces the eight cell means and the overall proportion of zeros and, here,

also seems to recover much of the individual cell zero probability structure, all with a single

additional parameter.

While we would not claim that the pattern of behaviour across Types A – D seen with the

Trajan data is going to hold in general, we do feel that there are some important messages.

First, the choice of ZI model may have unforeseen consequences on the overall fit, although

the specific ways in which this may happen are rather subtle. Second, mis-specification of the

ZI parameter (as here in treating it as constant when then is a large difference across the two

photoperiod settings) can severely impact the estimation of the mean component of the model

and covariate parameters of interest as seen here for types A and C.

Note that for the Trajan data if a full interaction model is also used for the additional ZI

parameter, then all four types (A, B, C, and D) are equivalent, as the likelihood reduces to one
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based on eight independent samples with their own parameters. These comments suggest that

in practice if interest is in the mean model then it would be sensible to use a rich model for

the ZI parameter, which will provide more robust inferences. Of course, if there is also explicit

interest in the covariates affecting the additional zero part then some care may be needed in

choosing an appropriate model and the development of some targeted diagnostics to help in this

would be valuable.

2.2 Implicit ZI extensions

We now consider the alternative approach of using over-dispersed models with apparently zero-

inflated data. In general, many over-dispersed models are one-parameter extensions of the basic

Poisson model and we write their probability function as πy(λ, φ) with an additional dispersion

parameter φ, where often φ = 0 corresponds to the Poisson. Here we restrict our attention to

fitting two different forms of negative binomial model. The canonical negative binomial model

arises from a Poisson-gamma mixture taking Y ∼ Poisson(λV ) where V is a Gamma(1/φ, 1/φ)

distributed random variable with mean 1 and variance φ. The resulting negative binomial dis-

tribution, which we refer to as NB-quad, has mean µ = λ and a quadratic variance function

µ + φµ2 and for a fixed value of φ it is in the Exponential Family. The probability of a zero

observation is π0(λ, φ) = (1+φλ)−φ
−1 ≥ e−λ with equality for φ = 0, showing that, for φ > 0,

this model does indeed inflate the probability of a zero observation compared to the Poisson

distribution. For the Trajan data fitting the NB-quad with the full eight parameter interaction

model and a single dispersion parameter φ, we see from Figure 1(a) that this model also repro-

duces the cell means and hence has some robustness for inference on regression parameters.

However, while the single additional over-dispersion parameter accounts for some of the zero-

inflation, it fails to model the zero proportions well. Of course, as with the explicit ZI models,

by including a model for the over-dispersion parameter we can substantially improve the fit of
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the zeros, at the price of added complexity.

For comparison we also consider a different parameterization of the negative binomial

model (arising from a different version of the Poisson-gamma mixture) that has a linear vari-

ance function, µ(1 + φ) and which we refer to as NB-lin. As with all Poisson mixture models,

as well as over-dispersion, the probability of zero is inflated compared to the Poisson with now

π0(λ, φ) =
(

(1 + φ)φ
−1
)−λ

≥ e−λ, again with equality for φ = 0, This model is not in the

Exponential Family and even when fitting the full eight parameter interaction model for the λ(k)

it does not reproduce the cell means, see Figure 1. However, it does seem to recover more of the

structure in the zero proportions. The point here is that different over-dispersed count models

may perform better, or worse, in particular examples. Of course, there are many other different

over-dispersion models that we could consider, but none are going to be a panacea for fitting all

zero-inflated data.

The intention here is not to present a definitive analysis, but rather to consider a simple

common model where differences are apparent between the different implicit and explicit ZI

models. In particular, we restrict our attention to a single ZI or over-dispersion parameter. In

practice, as suggested above, we may want this parameter to depend on covariates and then

many of the ZI models can be very similar, or indeed identical, and over-dispersion models can

also give similar fits, as noted by Warton (2005).

Here for explicit ZI models we have taken the base model to be Poisson, but this is not

necessary and we could use any suitable count distribution that could itself be a one (or more)

parameter extension of the Poisson. Such combinations of explicit and implicit approaches lead

to two parameter extensions π̃y(λ, φ, γ) of the Poisson model and offer yet more flexibility.

Additionally, in principle, it is also possible to have regression models for each of the three

parameters. However, such flexibility and complexity comes at a price and it would require a

very rich dataset to distinguish between different models.
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3 Explicit Models for Excess Zeros

Here we consider formally the explicit ZI modelling of excess zeros in count data regression.

We revisit and generalise the analysis of the Trajan data. Our objective in this is to put extant

models into a theoretical framework which seems to be novel. This emphasises the functional

form of what was described above as the specific alteration of the Poisson π0 to π̃0. This

apparently new perspective may facilitate the (under-developed) constructive criticism of model

fit, generally, using the Trajan analysis as a primitive example. Further, a new ZI type emerges

naturally from the theory, which can inherit the attractive properties of Exponential Family

probability distributions.

Formally, we discuss a wide family of one parameter extensions of the count distribution

πy(λ) underlying a generalized linear model (GLM), leading via coefficients to new estimates

of the mean and thus of the probability of zero counts. The extensions are based on a new model

π̃y differing from the base πy via a parameter, here termed γ. This itself could be modelled as

depending on covariates via further coefficients. This is indeed routine, but is not our immediate

concern. Here, by studying a very wide range of functional options for π̃y(λ, γ), we hope to

assist in the search for parsimonious ZI alternatives to the base pmf.

We first formalise the modelling in the previous section. The immediate focus is with mod-

els which explicitly address the apparent excess of zeros, but only zeros. The base could in fact

be provided by one of many two (or more) parameter over-dispersed pmfs, denoted here by

πy(λ, φ); often these are themselves generalisations of the Poisson. But for simplicity of nota-

tion, we typically suppress the second parameter. Here we refer to a zero-altered distribution π̃y

as defined by a function π̃0(π0, γ) with consequent implications for π̃y, y 6= 0. As we develop

below the functional form defines a type of ZI, parameterised in the notation below by γ. Three

such types (A,B,C) were discussed in Section 2 and a fourth (type D) mentioned.

12



The a priori need for such an extension was established there by a comparison of proportions

p
(k)
0 with fitted π̂(k)

0 = π0(λ̂
(k)), where πy denoted a Poisson GLM, leading to the maximum

likelihood estimate for each λ(k). These plots re-appear in Figure 2. In each of the panels, the

Poisson GLM is represented by the diagonal; the points are pairs
(
π̂
(k)
0 , p

(k)
0

)
. Note now that

the horizontal axis in Figure 1 denotes π̃0 for the given model whereas in Figure 2 it denotes the

(Poisson) base π0. Note also the full unit square is used for the plots, in contrast to Figure 1, to

allow for examination of the functions underpinning explicit ZI modelling. As in the previous

section, a full explanation of these functional forms is provided below and should be read in

conjunction with Figure 2. Furthermore the OD models, which are also presented in Figure 2,

should be read in conjunction with Section 4.

The details of these generalisations are the subject of this Section, as we now develop, firstly

focussing on the theory of the ZI types π̃y, and subsequently by considering the implications for

likelihood inference.

3.1 Explicit ZI Types

Formally, recalling that πy(λ) refers to an arbitrary base pmf, with Eπ[Y ] = λ and and possibly

other parameters φ, we write

π̃y(λ, γ) =

{
π̃0(π0, γ) if y = 0

ρ(π0, γ)πy(λ) if y > 0
(2)

where ρ re-normalises. The requirement that
∑

y π̃y =
∑
πy = 1 leads to ρ = 1−π̃0

1−π0 . Note that,

under π̃y, Eπ̃[Y ] = µ = ρλ and so the mean is also altered.

The specific function π̃0(π0, γ) of π0 characterises the type of ZI and is parameterised by γ;

it is such functions that are illustrated in Figure 2. Typically, but not necessarily, γ = 0 denotes

the null case π̃0 = π0. Observe that parameters (λ, φ) enter π̃0 and ρ only via π0. Note also that

the relative magnitudes of π̃y for non-zero y are the same as those for the base πy. Equivalently,
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the conditional pmfs, given y > 0 (that is, the zero-truncated distributions), are the same,

whether based on π̃y or the base πy. In particular µ+ = Eπ̃[Y |Y > 0] = Eπ[Y |Y > 0] = λ+.

It is such conditional pmfs that distinguish explicit and implicit approaches to the modelling of

excess zeros.

We now consider special cases. Three are relatively common. We will see below that many

of the interesting cases can be written as

g(π̃0) = γ + g(π0). (3)

They are all summarised in Table 1.

ZI Type A

The simplest model has constant π̃0 ∈ [0, 1]. With this restriction we could write π̃0 = γ. But

here, as for other types, γ may of course depend on covariates; we thus write g(π̃0) = γ for

some link function g(.). In this form γ is typically unconstrained.

This form is the hurdle model discussed in Section 2; it could be described as the constant

type of ZI. But its use in this very basic form (constant π̃0) is almost degenerate. Its inadequacy

for the Trajan data is apparent (Figure 2 top right panel). Note that here, and equivalently in the

other panels, the value of γ used for the function is the MLE γ̂ for the Trajan data under Type

A, as discussed in Section 2. In this case it is that value of γ that renders π̃0 = p0, the overall

proportion. Further, for this and other panels, the ‘data points’ are pairs (π0(λ̂
(k)), p

(k)
0 ) under

each ZI type. They thus correspond to the plotted functions π̃0(π0(λ), γ̂), where the value of γ̂

is specific to the ZI type. For Type A, the MLE λ̂(k) is derived from the truncated mean ȳ(k)+ , as

previously discussed. We formalise such inference in the next subsection.

Observe that this ZI type is zero-inflationary for small π0, but zero-deflationary for large

π0. This is a necessary consequence of its motivation, where zero counts are generated by a
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process quite independent from positive counts. Note also that the neutral case of π̃y = πy is

not a special case of this model.

ZI Type B

Type B is that referred to in Section 2 as the Poisson-hurdle. It can be expressed as π̃0 =

π0(αλ) = (π0)
α for positive α; for the Poisson base model we have π̃0 = e−αλ i.e. coming

from a Poisson model with mean αλ. An alternative form is through the complementary log-

log link function with unconstrained additional parameter γ = log(α) and

log(− log(π̃0)) = γ + log(− log(π0)),

giving π̃0 = (π0)
eγ . Observe that γ = 0 defines the neutral case, with positive and negative γ

corresponding to under- and over-inflation. The ZI Type B panel in Figure 2 (bottom left panel)

makes it quite clear that this more clearly reflects the frequency of zeros observed in the Trajan

data.

ZI Type C

In the notation of Section 2 this can be written as (1− π̃0) = (1−q)(1−π0) for 0 ≤ q ≤ 1; zero

inflation is thus non-zero deflation by a constant factor. It could be characterised as the ‘linear

model’. It is very widely used; indeed for very many authors, this model is coterminous with

ZI. For the Trajan data, like Type A, it is clearly a poor model of the observed zeros (Figure 2

middle bottom panel).

Its simplest link-function expression is via the complementary log function for γ ≤ 0.

log(1− π̃0) = γ + log(1− π0)

It is apparent that for Type C log(ρ) = γ. When γ = 0, π̃0 = π0 for all π0; here, as in Type B,

the neutral π̃0 = π0 is a special case.
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Like types B and D, and in contrast to A, π̃0 = 1 when π0 = 1. But like Type A, when

π0 = 0, π̃0 > 0; this distinguishes itself qualitatively from Type B, and also from D below. This

is the feature which marks both types A and C as inappropriate single parameter extensions for

the Trajan data. Note also that the model is also defined for γ > 0, subject to π̃0 > 0. Thus

Type C includes under-inflation; but now γ is constrained by a function of λ. More formally,

when γ > 0, we must write π̃0 = max(0, 1− eγ(1− π0)).

Type D

Type D, which is new, is most simply expressed as

logit(π̃0) = γ + logit(π0)

for unconstrained γ. Equivalently we have π̃0
1−π̃0 = eγ π0

1−π0 . The alteration may now be seen

as multiplicatively altering the odds ratio of a zero count. In closed form, it may be written as

π̃0 = eγπ0
1+(eγ−1)π0 .

Although its performance is similar to Type B, arguably it is the best of the four ZI types

in describing the observed frequency of zeros in the Trajan data (see Figure 2 bottom right

panel). But it also differs from the others in a more theoretical sense, as we elaborate below.

For, in many cases, pmfs involving Type D extensions are often within the Exponential Family.

It is for this reason that D is, for the Trajan analysis, the only one of the four ZI types for

which µ̂(k) = ȳ(k), as seen in Figure 1, sharing this property with the Poisson and NB-quad

distributions.

We conclude this subsection by making two remarks. Firstly, the use of the unit square for

the plots of π̃0(π0, γ) emphasises a peculiar feature of the design of the Trajan data. It is lacking

any samples corresponding to small means λ and thus large π0. It is this that renders it difficult

to distinguish which is the ‘best’ model, despite its other peculiar feature – replication – that

gives access to conditionally iid data and thus to the proportions p0 of observed zeros. An even
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more extreme example would be fully iid data. There we would see that all the four ZI types

would in fact be re-parameterisations of each other and would thus be impossible to distinguish.

All four functions would intersect at π̃0 = p0.

Figure 3 uses this to provide a different contrast of the functions. There it is seen that types

B and C can be remarkably similar for mid to large values of π0, and thus might be difficult to

distinguish in a data design that did not include small values of π0. Further, Type D distinguishes

itself from Type B in two ways. Firstly it has a symmetry (around the diagonal π̃0 = 1 − π0)

that the others lack; but this may in fact be disadvantageous in some cases. For example, it can

be steeper than B for very small π0; but then, necessarily, it will be much flatter for small 1−π0.

Secondly we observe that there are many more options in the design of even the one param-

eter functions π̃0 = π̃0(π0, γ) than the literature might suggest. These clearly extend beyond the

four types we have used for illustration. They typically involve classic link functions g(p), such

as complementary log-log and logit. Interestingly however, the particular characteristic of the

overwhelmingly popular Type C – namely that π̃0 > 0 when π0 = 0 – seems not to be a prop-

erty associated with any popular link function other than complementary log-log or close but

uncommon relatives such as g(p) = 1
1−p . Furthermore they may all be used with over-dispersed

base pmfs πy(λ, φ).

We now address issues in inference.

3.2 Inference

We focus on likelihood inference, and illustrate with the analysis of the Trajan data in Section

2, which provides some new insight. We do not dwell on algorithms or second-order issues;

but it may be that our perspective will stimulate ideas on the critical evaluation of explicit ZI

modelling. The theory thus focusses on the score equations, being differentials of logL =∑
i log(π̃yi) =

∑
i `yi(µ(λ, γ), γ), wrt the parameters γ, λi or functions of these such as π̃0, µi,
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and/or the coefficients β underlying the λ terms. This extends of course to cases of πy where

the φ parameter is non-null; but we do not dwell on this. Recall that, for the Trajan model,

there are nine parameters: one common γ term and eight values of λ(k), or equivalently of µ(k).

Particular interest lies in useful decompositions of the likelihood, as we now discuss.

The full distribution π̃y(λ, γ) can be written in various forms some of which lead to different

decompositions of logL. Although all forms apply to all ZI types, these are most simply inter-

preted for types A and D. Equation (4) below decomposes into components of the likelihood

focussing on zero and non-zero counts. It sheds light on the fitted functions in Figure 2 for all

types, and on the (λ, γ) parameters in Type A. Equation (5) sheds light on Type D, for this is

seen often to lie within the Exponential Family, with consequent other decompositions.

We begin by noting alternative versions of (2) which are particularly insightful

π̃y = (π̃0)
I{y=0} (ρπy)

1−I{y=0} = (π̃0)
I{y=0}

(
1− π̃0
1− π0

πy

)1−I{y=0}

=
(

(1− π̃0)1−I{y=0}π̃
I{y=0}
0

) (
π+
y

)1−I{y=0} (4)

=

(
π̃0
ρπ0

)I{y=0}

ρπy = eγI{y=0}
(
πy
π0

)
e−γπ̃0, (5)

where π+
y = πy

1−π0 is the zero-truncated form of πy and eγ denotes the odds ratio for (π̃0, π0).

From (4), with an obvious notation log π̃y(λ, γ) = `0y(π̃0(π0, γ)) + `+y (λ), the log-likelihood

decomposes as:

logL =
∑
i

`0yi(π0, γ) +
∑
i

`+yi(λi). (6)

This result applies to any ZI type, including A – D above. Importantly the second term is

independent of γ. The first term depends on I{yi = 0} and supplies the only information on γ

through π̃0; but recall that, apart from Type A, π̃0 is also a function of λ through π0, and thus the

first term generally supplies some information on λ. The usual calculus leads to score functions

whose solution is the MLE for (λi, γ) (and for any other parameters, φ). In general regression,

the λi are dictated by coefficients, these and γ being the true target of the inference.
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In the case of Type A, of course, π̃0i is independent of π̂0i, this being e−λ̂i for the Poisson

base. In the case of iid observations, as within a single cell of the Trajan design, γ̂ is such that

π̃0(γ̂) = p0 the observed proportion of zeros in the data. Recall that this remark applies to all

two parameter (λ, γ) types of ZI in the iid case. However, in the Trajan case with common γ

across all cells, results will differ with ZI type, as we now illustrate.

It is useful first to consider in more detail the estimation of λ under Type A, first for the

iid case and then for the Trajan design. For Type A, from (4), the estimation of λ focusses

solely on `+y (λ), and thus on the zero-truncated distribution π+
y (λ). The expected value of the

zero-truncated distribution is (1 − π0)
−1λ for which the MLE is ȳ+, this being the case for

all pmfs in the Exponential Family, such as the Poisson and NB-quad, and truncated versions

thereof. Thus λ̂ = (1 − π̂0)ȳ
+. But Eπ̃[Y ] = µ = ρλ; it is thus estimated, for Type A, by

µ̂ = ρ̂λ̂ = 1−p0
1−π̂0 (1 − π̂0)ȳ+ = ȳ. Again, since all two parameter ZI types are equivalent in the

iid case, this result applies also to them, as is well known. We revisit this for Type D below,

where this demonstration is very simple.

But in the Trajan model, there are eight cells with λ = λ(k) in each but sharing a common

ZI parameter γ, defining for all ZI types, a common π̃0 estimated by the overall p0. The term

`+y decomposes into sums over each of these cells, each leading, separately, to estimates of each

λ(k). In the case of Type A, these are zero-truncated means and thus lead to estimates

µ̂(k) = ρ̂(k)λ(k) = (1− p0)ȳ+(k) 6= (1− p(k)0 )ȳ+(k) = ȳ(k).

It is this that leads, in Figure 1, to the fact that ZI Type A leads to values µ̂(k) other than ȳ(k),

unlike the simple Poisson. Similar but technically more difficult arguments apply to other ZI

types. The exception is Type D, which does lead to µ̂(k) = ȳ(k), as we discuss below.

The interpretation of Figure 2 is assisted by the following observation. Optimisation overall

at (λ̂i, γ̂) can be seen as optimisation for γ (at γ̂) given values of λ̂i, and for the λi (at λ̂i) for
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given γ̂. (We make no statement, here, as to the efficiency of an algorithm based on this; and

any such algorithm should be distinguished from the EM algorithm widely used in ZI Type

C, which uses binary regression of latent binary variables.) In particular, for given λ̂i, the

maximum likelihood estimation of γ focuses exclusively on `0y(π̃0(π̂0, γ)). That is to say, at

the MLE, γ̂ is that parameter which best fits the function π̃0i(π̂0i, γ) to observations I{yi = 0}

modelled as E[I{Yi = 0}], which we denote as π̃0i. Thus, γ̂ may be considered (at the MLE)

as the fitted parameter in the binary regression of the observables I{yi = 0} on g(π̂0i) using a

very particular link function for E[I{Yi = 0}] with one unknown coefficient, that is γ + g(π̃0i).

A trivial example of this is that the MLE γ̂ = p0 is, for the Trajan analysis, a weighted average

of the eight separate values p(k)0 . There being but one parameter in this function, the ultimate

best fit is likely to be dominated by its large scale properties, being here the behaviour of the

function at both large and small values of π0; for Type A the functions in Figure 2 are thus

relatively inflexible.

For these data, Figure 2 make it clear that ZI types A and C are evidently similar, and

similarly inappropriate. In contrast, the ZI types B and D are clearly more appropriate. More

subtly, the data design – resulting in large means and low probabilities of zero – are challenging

for the functions offered by types A and C, which offer little flexibility in this part of the unit

square, unlike types B and D. Other data sets may of course be challenging for types B and D.

The second form for π̃0 (Equation (5)) is of particular importance for Type D when the base

distribution πy(λ) is, like the Poisson, within the Exponential Family. For the Trajan analysis,

it highlights an important distinction between the models corresponding to (here similar) types

B and D. In particular, it explains why, in Figure 1, pmfs for the Poisson, NB-quad and ZI Type

D with Poisson base both lead to the same estimators of the cell expected values. ZI Type D

may thus be a useful addition to the ZI types.

The key point in Equation (5) is that, for Type D, the odds ratio for π̃0 and π0 is taken to
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be constant, denoted eγ . As a consequence, the parameter γ can have a particular significance,

when πy(λ) is in the (one parameter) Exponential Family and can thus be written as log(πy) =

yη(λ)−A(λ) + c(y); for the Poisson the natural parameter is η = log(λ). Firstly, defining c(y)

such that c(0) = 0, it is clear that the cumulant function A(λ) = − log(π0), being λ for the

Poisson; and further, from the properties of the Exponential Family, we have E[Y ] = A′η(λ, γ),

being λ in the Poisson case. From (5) we thus have

log(π̃y) = yη(λ) + I{y = 0}γ − Ã(λ, γ) + c(y) (7)

where Ã(λ, γ) = γ− log(π̃0), which plays the same role as A(λ) for π0. The implication is that

π̃y is in the two-parameter Exponential Family, inheriting this property from the πy. The natural

parameters are (γ, η).

Further, the log-likelihood in Equation (6) includes a decomposition into the sum of two

terms, being `0y(γ) and `+y (λ). And indeed, if π(y) is in the m-parameter family, then π̃y is in

the (m+ 1)-parameter family. It follows immediately that sufficient statistics for an iid sample

yi; i = 1, . . . n from π̃y are (
∑
yi,
∑

I{yi = 0}), being equivalent to (ȳ, p0) and having expected

values already known here to be (µ, π̃0), recalling that µ = ρλ. This result is also available in

general from differentiating Ã(λ, γ). And, following the observation above on the equivalence,

in the iid case, of all two parameter ZI types, ȳ and p0 are unbiased MLE estimators of µ and

π̃0, as already shown above, via the more cumbersome Type A arguments. This is the reason

why ZI Type D (with Poisson base) shares this property with the usual Poisson and NB-quad

models. And further, we can immediately assert that ZI Type D with NB-quad as base will also

share this property.

But for the Trajan model, the decomposition in Equation (6) extends to nine terms. Formally,

with independent Poisson pmfs modelling each cell in the Trajan data, we can write this as

an eight-parameter Exponential Family distribution. The log-likelihood for ZI Type D thus
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decomposes into the sum of nine terms,
∑
`I{yi=0}(γ) and eight terms

∑
`yi(λ

(k)). And thus

the MLEs are γ̂ = p0 (as above) and µ̂(k) = ȳ(k). This differs (in respect of µ̂(k)) from Type A

above, and in fact coincides with the neutral (no ZI) Poisson mean for which E[Y ] = λ = µ

for each cell, as shown in Figure 1. The same reasoning applies to (neutral) NB-quad estimates

and indeed to ZI Type D with NB-quad base (not shown here for brevity).

In closing this section we remark that arguments can be made for an alternative parameteri-

sation of π̃0 via µ (and thus of π̃y), writing it instead as π̃0(µ, γ), a function of π0(λ(µ, γ)). This

might facilitate comparison with OD generalisations of the Poisson as base, where the parame-

ter µ refers to E[Y ] in both base and generalisation. It would also have impact on Figure 2. But

firstly, λ(µ, γ) is not generally available in closed form; and secondly, the arguments above for

Type D show that the natural parameters – in at least one theoretical sense – are indeed (func-

tions of) λ and γ. There is at least one exception to this, provided by Type C; for there µ = ρλ,

where ρ = eγ is constant, and we can write π̃0 = (1− ρ) + ρπ0(ρ
−1µ) = (1− ρ) + ρ(π0)

ρ−1 in

the Poisson case, being no longer linear in π0. Further, the importance of closed-form expres-

sions will not be a barrier in some circumstances, such as diagnostics – which are for discussion

elsewhere.

4 Zero-Inflation via Over-Dispersion

As we have already noted, over-dispersion models, such as the negative binomial, have often

been used for the analysis of count data with excess zeros. Indeed, some authors have sug-

gested that in practice such OD models may be sufficient with no need to explicitly model

the excess zeros. In Section 2 we considered the use of particular negative binomial models

and here we provide a little more detail. Of course the negative binomial family is just one

form of OD extension of the Poisson distribution, albeit the most widely studied and used.

General mixing of a Poisson with any distribution (also often referred to as compounding)
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leads to OD count distributions. Other generalisations include weighted Poisson models (see

Del Castillo & Pérez-Casany, 1998) extending the original idea of size-weighting of counts in

Rao (1965). This general family of models includes the currently popular COM-Poisson distri-

bution (Shmueli et al., 2005; Sellers & Shmueli, 2010; Ribeiro Jr et al., 2020) and unlike the

mixture-based over-dispersion models this (and other members of the family) can also accom-

modate underdispersion. Other classes of extended Poisson models that can handle both over

and underdispersion, include the Generalised Poisson (Consul & Jain, 1973), the Gamma-count

(Zeviani et al., 2014) based on using gamma-distributed inter-arrival times rather than the expo-

nential times as in a Poisson process, and the discrete Weibull distribution (Luyts et al., 2019)

as an example of the general approach of discretisation of a continuous random variable. While

OD versions of these can be used to model excess zeros, the combination of these models with

explicit ZI also provides the possibility of modelling excess zeros where the non-zero counts

are under-dispersed.

In many OD models not only do we have Var(Y ) > E[Y ], but also, often as a consequence,

π0(µ, φ) > πP0 . Simply stated, in general, over-dispersion puts more weight in the tails of a

distribution, but as a count random variable Y is constrained below by zero, this extra weight in

the lower tail accumulates on low values of Y and, in particular, on Y = 0. As such these models

can provide an alternative approach to the apparent problem of excess zeros in data. As this is

an indirect consequence of the OD model we call this implicit ZI. Puig & Valero (2006) provide

a theoretical treatment of the circumstances under which OD induces ZI, characterising the

conditions under which this is necessary. They use it to also contrast several count distributions;

one of these is the Negative Binomial (NB), which here we use as an exemplar of OD models.

Interestingly, as we develop below, the details depend not only on the OD distribution, but also

on its parameterisation. In Figure 2, we show the implied ZI behaviour of these models for

comparison with that of the explicit ZI models.

23



Negative Binomial

We focus on two re-parameterisations of the Negative Binomial with pmf

πy(µ, k) =
Γ(k + y)

y!Γ(k)

(
k

k + µ

)k (
µ

k + µ

)y
which has E[Y ] = µ and Var(Y ) = µ + µ2/k and π0 =

(
k

k+µ

)k
. The most frequently used,

to which we refer as NB-quad, has k = φ−1, Var(Y ) = µ + φµ2 and π0 = (1 + φµ)−φ
−1

. An

alternative, NB-lin, has k = µφ−1, with Var(Y ) = µ(1 + φ) and π0 =
(

(1 + φ)φ
−1
)−µ

. The

Poisson is a special case of both, corresponding to φ → 0. There are in fact other versions of

the Negative Binomial, generically NB-P (Gurmu & Trivedi, 1996), having Var(Y ) = µ(1 +

φµp−1) with a power relationship for the over-dispersion index. Effectively this introduces a

third parameter; but we do not pursue this option.

These two versions of the NB are included in Figure 2, where, as discussed in Section 3,

the extended model zero probabilities π̃0 are plotted against the Poisson base π0, augmented by

the observed and model zero probabilities for the Trajan data. Here we have expressed π̃0(µ, φ)

as a function of πP0 via µ = − log
(
πP0
)
. Figure 3 also illustrates this for the two different

parameterisations of the Negative Binomial distribution. In constructing this theoretical plot we

have fixed the dispersion parameter φ so that the curves pass through the same common (π0, π̃0)

point (0.2, 0.4). For both, the induced ZI, characterised by π̃0(πP0 , φ) is such that π̃0 → 0 as

πP0 → 0 or equivalently as µ → ∞, or equivalently as πP0 → 0, as with the ZI of types B

and D. More specifically, for NB-lin, from log(π̃0(π
P
0 , φ)) = φ−1 log(1 + φ) log(πP0 ), if we set

eγ = φ−1 log(1 + φ), the ZI induced by NB-lin is exactly as Type B for all πP0 and thus for all

µ. Also, except for large µ (small πP0 ), this induced ZI bears some resemblance to Type C, the

classic mixture model of ZI. Further, we see that, apart from the behaviour for very small πP0 (ie

for πP0 above the ‘elbow’) the ZI function π0(πP0 , φ) for NB-quad is even more similar to that

for Type C. This is essentially because here this function has unit slope both at the elbow and,
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unlike NB-lin, as πP0 → 1 (equivalently µ→ 0).

But recall that, despite ZI Type B and NB-lin having parameters γ and φ such that they have

the same probabilities of zero for all µ, they are quite different distributions and have different

variance functions. Although there are similarities in behaviour between the NB-quad and Type

C models their probability structures are different and, for example, π̃Cy can be bi-modal. The

point is that the over-dispersion in the Type C model is centred solely on the zero probability,

whereas in the NB-quad the extra dispersion is smoothly spread across the whole range of y-

values. The central challenge is that with only two parameters available, correspondence cannot

be obtained on three important aspects: mean, variance and the probability of zero.

Simple Inference for the Negative Binomial

Inference is well established for the NB model. But there is a subtlety, even in the iid case.

Moments based estimators of (µ, φ) will necessarily match the sample mean and variance; and

thus not match p0, the observed frequency of zeros, especially if this is large. But other, more

widely used, estimators will, especially for large p0, result in a φ̂ that (approximately) matches

the fitted π0(µ̂, φ̂) by overestimating the variance. The theory is more straightforward for NB-

quad.

NB-quad is a member of the Exponential Dispersion family. Here, in the iid case, the sample

mean is the MLE for µ; while the MLE for the dispersion parameter φ requires an iterative

solution of the score equation. However, the joint ML estimators do have the nice property of

being asymptotically independent (see Lawless, 1987). Other estimators used for φ include a

moment estimator (this can be obtained for more general models by equating the generalized

Pearson chi-square statistic to the degrees of freedom). Historically, a zero-frequency based

estimator has also been used and, as for the explicit ZI models, it results in the zero-frequency

being fitted perfectly; however, for data generated by an explicit ZI Poisson process, it does this
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by overestimating the variance with a larger fitted φ value. Interestingly in this ZI setting the

MLE lies between the moment and the zero-frequency estimators, giving both a fitted variance

Varπ0(µ̂,φ̂) that is larger than the observed sample variance, and a fitted π0(µ̂, φ̂) that is closer to

the observed p0 than might be expected, at the price of an extended fitted upper tail. However,

in applications to data with excess zeros, there is typically also some OD in the non-zero counts

and so this inflated estimated value of φ may simultaneously capture both excess zeros and

additional dispersion and lead to an adequate and parsimonious fit.

This behaviour perhaps explains the findings in Warton (2005), who provides comparisons

between different implicit and explicit ZI models fitted to multivariate abundance data from 20

datasets. His results show that the NB-quad model is superior to ZIP and ZINB in terms of AIC,

when looking at an average over 1672 count variables. He comments that these abundances do

not have extra zeros when compared to the NB-quad distribution, and are likely to have arisen

from NB-quad distributions with small means.

The NB-lin is not in the Exponential Family, even for a known value of φ, and is inferentially

less convenient. Of course, in the iid case the NB-lin is simply a reparameterisation of the NB-

quad, but for fixed values of the dispersion parameters they behave differently as µ varies, see

Table 1 and Figure 3, and these differences potentially become apparent in the regression model

setting.

5 R Packages for Fitting ZI Models

In this section we describe the use and background of various commonly-used R packages for

modelling zero inflation. There are many packages listed on the R package web page which

purport to perform zero-inflated regression, but many of these apply to specific data types or

constraints (e.g. hidden Markov models, monotonic zero inflation, compositional data), apply

to a particular application area, or deal in continuous rather than count data (the focus of this
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paper). Instead we focus on 4 main packages: zic, pscl, VGAM, and gamlss. A further

popular package is COZIGAM but this package has been archived from CRAN and has not been

updated since 2012.

The purpose of this section is to showcase the wide array of possibilities currently available

in R for zero inflated/adjusted modelling and provide brief examples of their use on our example

data to enable those new to the field to pick up on the salient features. Table 2 shows a summary

of these packages and an overview of their features and differences.

All of the aforementioned packages are Frequentist in their inferential approach with the ex-

ception of zic. A number of packages exist which potentially allow for Bayesian zero-inflated

and zero-adjusted models to be fitted, such as JAGS (Plummer, 2003), Stan (Stan Development

Team, 2014), INLA (Rue et al., 2009), and Nimble (de Valpine et al., 2017). However, these

require considerable extra coding experience (and often many more lines of code) so we do not

review them here. A particular key issue is that many of these packages support only a small set

of probability distributions, so that extra distributions have to be added by hand (or hack) and

often lack vectorisation speed-ups. For those wishing to persist in learning one or more of these

packages (which we would recommend), we suggest first consulting the manual to determine

whether the chosen custom probability distributions are included by default.

The zic package (Jochmann, 2013) uses Markov chain Monte Carlo (MCMC) to produce

posterior distributions of zero-inflated (though not hurdle) models with covariates. The covari-

ates are assumed to be common across both the Poisson likelihood and the binary zero-inflation

component. Only a Poisson likelihood is supported, though the model includes latent effects to

account for over-dispersion to create, marginally, a Poisson log-normal likelihood. In addition

the package has methods to run a stochastic search variable selection (SVSS), a method which

removes the need to choose between model structures.

R package pscl (Zeileis et al., 2008) contains a very wide array of both hurdle and zero-
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inflated models. A key feature is the possibility of selecting different distribution types for πy

and π0. Three different distributions are permitted for the counts (Poisson, negative binomial,

and geometric), and three types of zero-inflation (binomial, Poisson, negative binomial, and ge-

ometric). These latter distributions are censored at value 1 to produce the required hurdle effect.

For standard zero inflation models only binomial (i.e. Bernoulli) inflation is permitted. Link

functions can also be changed (for both hurdle and zero-inflated) though again some restrictions

apply.

The VGAM package interface (Yee, 2015) is very similar to that of the standard R base lm

and glm functions whilst adding in multivariate components (via constraint matrices) which

do not apply to the zero inflated models implemented. Exactly as with glm, the vglm and

vgam functions take a formula and family argument, the latter of which has a variety of

zero-inflated options, including zero inflated Poisson, negative binomial, and geometric, and

similarly zero-altered (two-stage/hurdle) versions. We found the output of these models to

be somewhat confusing, since the tabular output displays multiple intercepts (corresponding

seemingly to the different linear predictors).

The gamlss package contains the richest set of zero-inflated and zero-altered (two-stage/hurdle)

models, including a large number of zero-inflated continuous (and bounded) likelihood distri-

butions. The count distributions supported include binomial, beta-binomial, negative binomial,

negative beta-binomial, logarithmic, Poisson, and Zipf. The gamlss package in particular al-

lows for the modelling of multiple different parameters in a distribution, each with their own

parametric relationship, but none of the examples we found in the package used this feature.

Finally, we provide unified code to fit ZI types A, B, C and D (and reproduce all results

obtained from analysing the Trajan data) at www.github.com/andrewcparnell/ZI_

review.
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6 Conclusions

In this paper, we have only examined the basic underpinnings of regression in the presence of

excess zeros in univariate count data. Our first contribution to this is a novel perspective on the

modelling of excess zeros in count data regression. This is primarily in the presentation of an

approach which we have referred as explicit ZI. The modelling issue, as presented here, is sim-

ply the choice of link function, and the consequent estimation of the sole parameter. Four such

simple options are presented; others and extensions to two parameter variations are possible.

The two approaches discussed – explicit ZI and implicit ZI via the use of distributions such as

the NB – may of course be combined, and all parameters may be modelled via covariates.

It could be argued that the real difficulty is the embarrassment of choice. The estimation

of the parameters is no longer a challenge (for univariate counts), given modern computing

algorithms; nor is the identification of the best, given a metric such as the AIC, a metric which

may not be natural for some users. The real challenge is in fact the identification of the most

useful model given the vagaries of that term, and the ubiquity of potential outliers within all

data sets.

Our approach to the current paradigm of explicit ZI models contrasts with that of data gen-

erating mechanisms that involve latent variables. Of course, as pointed out by Colin & Pravin

(2013), p.147: “The latent class interpretation is not essential ... As such the approach is an

alternative to non-parametric estimation.” However, from the almost invariable discussion in

papers in the applied literature, it does seem that the user community feels obliged to explain

the mixture interpretation. This can be useful, of course; but sometimes it can involve shoe-

horning. Nevertheless mixtures defined by latent variables can be a fruitful theoretical avenue

for defining models for use with multivariate counts. Indeed this was the purpose of Salter-

Townshend & Haslett (2012).
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The practical benefit of the new perspective in univariate regression may not in fact be new

models. The non-parametric perspective may yield new diagnostics. It may even help to estab-

lish a-priori evidence of excess zeros. Current practice usually involves marginalisation over

all covariates. An empirical approach would involve, as a first step, a comparison between

observed I{yi = 0} and the fitted probabilities of zero under a default ‘base’ model, generi-

cally π̂0i = π0

(
µ̂i, φ̂i

)
. This comparison could simply regress the binary I{yi = 0} – non-

parametrically, using splines, for example – on functions including log (π̂0i) and log (1− π̂0i),

yielding values ˆ̃π0i. Any departure from the unit line π̃0i = π0i would constitute a priori evi-

dence of excess zeros with respect to the fitted base model.

Furthermore such a plot might serve, post-hoc, as a diagnostic for a fitted ZI model, by

regressing I{yi = 0} on functions of fitted π̃0i. We remark that the current literature on count

data regression in general – and on excess zeros in particular – seems sadly lacking in criticism

that most users would deem to be constructive. Portmanteau statistics based on Information

Criteria do not always have such a constructive interpretation. Model details can be dominated

by extreme values; and this is particularly so for models that admit very large values for the

variance. But IC statistics do not readily identify such data points.

In circumstances where it is deemed to be important to choose amongst alternative models

for the excess zeros, such regressions highlight the importance of the design. For without data

corresponding to very large µi (and thus small π0i) it will be impossible to distinguish ZI models

of Type B, C or D; and difficult to distinguish from the OD approach. In practice, of course,

this will be further complicated if - as is common - the parameters γ and/or φ are themselves

modelled via covariates. But the fact that this is common may reflect poor diagnostics (or indeed

over-enthusiasm).

Our second contribution is to make more explicit the parallels between the OD and ZI ap-

proaches to modelling excess zeros. But we have not resolved the choice between the explicit
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(ZI) and implicit (OD) approaches, when the base is the Poisson. On the contrary, we see that,

from the point of view of the excess zeros, one ZI model – Type B – behaves exactly like the

NB-lin; and NB-quad is not unlike the (dominant) ZI Type C. The difference between the latter

two is only apparent for very large µ, and only carefully designed data will differentiate them.

They do differ as regard the mean-variance relationship, but only in detail for both exhibit a

quadratic relationship; and this too will only be apparent at very large µ. In addition, for iid

data, technical details of the usual inference procedures for NB-quad do little to help differen-

tiate the very different models. Further, for the more typical case of regression, these details

can only become more challenging. What is clear is that any attempt to discriminate between

explicit and implicit ZI models will require a rich and varied dataset and diagnostics focussing

jointly on both fitted zero-probability and upper tail behaviour. This discussion suggests that

the burgeoning literature on other over-dispersed generalisations of the Poisson – and on zero-

inflating them – may itself be premature. As a final contribution, Table 1 offers an alternative

to the confusing nomenclature that has developed.
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Figure 1: Fitted versus observed proportion of zeros and means of each combination between
photoperiod and hormone concentration in the trajan data for (a) the Poisson, NB-lin and NB-
quad models, and (b) ZI models types A, B, C and D.
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Figure 2: Altered probability of zero π̃0 versus probability of a zero based on the Poisson
distribution π0 for the NB-lin, NB-quad and ZI models types A, B, C and D, fitted to the Trajan
data. Points correspond to the pairs

(
π̂
(k)
0 , p

(k)
0

)
, k = 1, . . . , 8, i.e., the eight combinations

between photoperiod and hormone concentration. The dashed identity line is the Poisson base.
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Figure 3: Theoretical ZI relationships. We plot πP0 as Poisson against π̃0 for the ZI and OD types
defined in column 1 of Table 1. The parameters of each distribution are matched so that each
line (except for Poisson) travels through the point (0.2, 0.4) for a range of means. This yields
differing ZI parameters for each distribution: γA = −0.405, γB = −0.563, γC = −0.288,
and γD = 0.981, all provided to match the scale of Table 1. For the Negative Binomial models
φNB-lin = 1.82 and φNB-quad = 1.13, again with reference to the parameterisation in Table 1.
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Table 1: A typology of zero inflation and over-dispersion. Our four types and their common
names are shown alongside their ZI behaviour with respect to the Poisson base.

Type: Common names Explicit ZI function

A: Basic Hurdle, Zero-Altered, Two-stage logit(π̃0) = γ

B: Poisson Hurdle, Zero-Altered, Two-stage log(− log(π̃0)) = γ + log(− log(π0))

C: ZIP, Mixture, Lambert’s mixture log(1− π̃0) = γ + log(1− π0), γ ≤ 0

D: Logistic ZI (New – this paper) logit(π̃0) = γ + logit(π0)

OD dist Implicit ZI function

NB-lin log(π̃0) = φ−1 log(1 + φ) log(πP0 )

Var(Y ) = µ+ φµ

NB-quad log(π̃0) = −φ−1 log
[
1− φ log(πP0 )

]
Var(Y ) = µ+ φµ2
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Table 2: A list of R packages we use to demonstrate zero inflated regression modelling
Name Approach Likelihoods supported Covariate types supported
zic Bayesian Poisson (and Poisson log-

normal)
Restricted to be the same in both
regular and zero-inflated compo-
nent. Also includes variable selec-
tion

pscl Frequentist Poisson, negative binomial,
and geometric (count distri-
bution, and binomial, Pois-
son, negative binomial, and
geometric (zero-inflated dis-
tributions; hurdle only)

Restricted to be the same in both
regular and zero-inflated compo-
nent

VGAM Frequentist Poisson, negative binomial,
and geometric (Zero-inflated
and hurdle)

Zero inflation components do not
vary by covariate, but formulae al-
low for spline and other GAM-type
relationships

gamlss Frequentist At least 12 different types
(zero inflated and adjusted)

Has the ability to model each pa-
rameter in a distribution separately
using, e.g. the GAM framework
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