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1 Introduction

Visualization is a key tool in understanding statistical and machine learning models. In

this paper we present new visualizations to serve two main goals, namely improved model

understanding and interpretation. Our new visualizations are based on variable1 impor-

tance and interaction measures, and partial dependence plots. A variable importance value

is used to express (in a scalar quantity) the degree to which a variable affects the response

value through the chosen model. A variable interaction is a scalar quantity that measures

the degree to which two (or more) variables combine to affect the response variable. Vari-

able importance and variable interaction (henceforth VImp and VInt; together VIVI) are

widely used in many fields to understand and explain the behaviour of a model. In biology

they are used to examine gene-gene interactions (e.g. Wang et al., 2012). In high-energy

physics VImp can be an important tool in high dimensional feature selection processes (e.g.

Gleyzer and Prosper, 2008). In econometrics they are common tools to evaluate interaction

behaviour (e.g. Balli and Sorensen, 2010).

Traditional methods of displaying VImp or VInt use variants of line or bar plots, see

for example Molnar (2019). However, in variable importance plots there is relatively little

emphasis on displaying how pairs of interacting variables may be important in a model. This

can be a hindrance to model interpretation, especially if a variable has low importance but a

high interaction strength. The inclusion of interacting terms in a model has been shown to

affect the prediction performance (Oh, 2019). However, as shown in Wei et al. (2015a), for

high-dimensional models that are governed mainly by interaction effects, the performance of

certain types of permutation-based variable importance measures will decrease and thereby

produce low values of importance. Consequently, viewing the VInt and VImp together

provides a more complete picture of the behaviour of a model fit.

Our new displays present VInt and VImp jointly in a single plot. We allow for seriation

so that variables are reordered with those exhibiting high VIVI grouped together. This

1We use the term ‘variable’ throughout to denote the input to a statistical and machine learning model

as this seems to be the most common parlance. Other terms commonly used include: feature, predictor,

explanatory variable, independent variable, etc
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assists in interpretation and is particularly useful as the number of variables becomes large.

Furthermore, we make use of filtering, so less influential variables can be removed. For our

network displays we use graph clustering to group together interacting variables.

Partial dependence plots (PDP) were introduced by Friedman (2000) to show how the

model’s predictions are affected by one or two predictors. In addition to the above we

propose a new display which shows all pairwise partial dependence plots in a matrix-type

layout, with a univariate partial dependence plot on the diagonal, similar to a scatterplot

matrix. With this display the analyst can explore, at a glance, how important pairs of

variables impact the fit. Once again, careful reordering of the variables facilitates interpre-

tation.

Our final display takes the filtering of all pairwise partial dependence plots a step

further. We select only those pairwise partial dependence plots with high VInt, and display

an Eulerian path visiting these plots by extending the zigzag display algorithm of Hofert

and Oldford (2020). We call this a zen-partial dependence plot (ZPDP).

These new visualizations can be used to explore machine learning models more thor-

oughly in an easily interpretable way, providing useful insights into variable impact on the

fit. This is demonstrated by practical examples. In each plot careful consideration is given

to various aspects of the design, including color choices, optimising layouts via seriation,

graph clustering, and Euler paths for the ZPDP. Filtering options limit the plots to vari-

ables deemed relevant from VImp or VInt scores. Our new displays are appropriate for

supervised regression and classification fits, and are model and metric agnostic in that no

particular model fit nor importance method is prescribed. The methods described here are

implemented in our R package vivid (Inglis et al., 2021).

The organisation of the paper is as follows. In Section 2 we discuss the concepts of

VImp and VInt. Then we describe our new heatmap and network displays of joint variable

importance and interaction and demonstrate these on an example. In Section 3 we discuss

our new layouts for collections of partial dependence plots, either in a matrix format or

zig-zag layout and show their application. In Section 4 we use our new methodology to

explore a machine learning fit from a larger dataset. Finally in Section 5, we offer some
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concluding discussion.

2 Visualizing variable importance and interaction

We begin with a non-exhaustive review of the concepts of VImp and VInt. Though the

visualizations we present are agnostic to the measures used to determine these scalar quan-

tities, some degree of understanding is helpful in interpreting the later plots. We then

describe our new visualizations and their design principles and provide illustrations.

2.1 Measuring variable importance

A VImp is a scalar measure of a variable’s influence on the response. Many techniques

have been proposed to calculate variable importance, depending on the type of model. The

term ‘influence’ here may encompass changes in the mean response or that of higher order

uncertainty. In our work we focus exclusively on changes in the mean. For a wider review

of variable importance techniques, and the different goals that a variety of approaches may

achieve see Wei et al. (2015b).

Much of the initial work in VImp focused on estimating the partial derivative of the

response with respect to one or two input variables (Frey and Patil, 2002). This is a global

VImp measure when the model is linear, but perhaps less useful (though still potentially

interesting) in non-linear models where it is often defined as a local importance measure.

In high dimensional settings these methods can be discretized across a hyper-cube to allow

for the identification of, e.g., linearity in a non-linear model (Helton and Davis, 2002). Due

to their local behaviour, we do not incorporate them into our visualizations below.

Some VImp measures arise naturally out of a model structure. The most familiar would

be those based on summary statistics created from regression models, such as standardized

coefficient values, (partial) correlation coefficients, and R2. Many of these can be extended

to non-linear models such as generalized additive models (Wood, 2000), or projection pur-

suit regression (Friedman and Stuetzle, 1981). R2 in particular seems useful as a VImp

measure, as it can be defined for a wide variety of statistical models and can be decom-
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posed into main and potentially high order interaction effects, yielding a VInt measure in

addition.

Similarly, other model-structure based methods arise out of now standard machine

learning techniques. Random forests, for example, involves the use of the Gini coefficient,

and the reduction in mean square error, to catalog a variable’s influence on the ‘purity’ of

a model output (Breiman, 2001). This can naturally be seen as a VImp measure. Others

have extended these approaches to introduce conditional and permutation VImp statistics

which aim to reduce the bias that may occur due to variable collinearity (for example, see

Hothorn et al., 2006).

Conditional variants of permutation variable importance were proposed by Strobl et al.

(2008) for a random forest. This method examines splits of the trees in a random for-

est and permutes the variables within these subgroups (see Section 2.2 for more details).

Whereas Strobl et al. (2008) relied on the splitting of trees to determine the subgroups, a

model-agnostic approach was introduced by Molnar et al. (2020) that builds the subgroups

explicitly from the conditional distribution of the variables. In tree-based models such as

CART and random forests, Ishwaran et al. (2010) proposed a VImp called minimal depth,

which is the proximity of a variable to the root node, averaged across all trees.

Permutation importance was introduced by Breiman (2001) and is measured by calcu-

lating the change in the model’s predictive performance after a variable has been permuted.

The algorithm works by initially recording the model’s predictive performance, then, for

each variable, randomly permuting a variable and re-calculating the predictive performance

on the new dataset. The variable importance score is taken to be the difference between the

baseline model’s performance and the permuted model’s performance when a single feature

value is randomly shuffled. A similar agnostic permutation concept was developed by Fisher

et al. (2019). This method permutes inputs to the overall model instead of permuting the

inputs to each individual ensemble member. In situations where no embedded variable

importance is available, a model-agnostic approach such as permutation importance is a

useful tool.

In theory any of the above global importance measures could be used in our visual-
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izations. However, providing code for each would be a daunting task. Instead we take

a pragmatic approach and use the associated VImp measure with the model that we are

fitting. In cases where there is no such obvious method, we use the Fisher et al. (2019)

agnostic permutation approach discussed above to measure VImp.2

2.2 Measuring variable interaction

Measuring variable interaction in a machine learning model can be considerably harder than

estimating marginal importance. Even the definition of the term ‘interaction’ is disputed

(Boulesteix et al., 2015). We focus here on bivariate interaction only, though higher order

interactions may certainly be present in many situations. Friedman and Popescu (2008)

state that a function f(x) exhibits an interaction between two of its variables xk and xl if

the difference in the value of a function f(x) as a result of changing the value of xk depends

on the value of xl. That is, the effect of one independent variable on the response depends

on the values of a second independent variable. Often, an interaction is taken to mean a

simple multiplication of two (continuous) variables (e.g. Berrington de González and Cox,

2007), though in machine learning models much more complex relationships can exist.

We follow the definition of Friedman and Popescu (2008) by considering an interaction

to be estimated from the difference between joint and marginal partial dependence; a full

mathematical definition is given below. Even this definition should not be used without

care, as in the case of highly correlated or potentially confounding variables.

In tree-based models such as CART and random forests, much focus has been on mea-

suring interactions via the structure of trees (e.g. Ishwaran et al., 2010; Deng, 2019). If two

variables are used as splits on the same branch, this might initially appear like a measure

of interaction. However, this does not separate out the interaction from potential marginal

effects. The problem is partially overcome by permuting the variables (individually for a

VImp, jointly for VInt), to assess the effect on prediction performance. The resulting VInt

measure is known as pairwise prediction permutation importance (Wright et al., 2016).

For models that are not tree-based, or when a model-agnostic measure is required, a

2In our implementation, any available VImp may be used.
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variety of other methods can be used. Many of these are based on the idea of partial

dependence (Friedman, 2000). The partial dependence measures the change in the average

predicted value as specified feature(s) vary over their marginal distribution. The partial

dependence of the model fit function g on predictor variables S (where S is a subset of the

p predictor variables) is estimated as:

fS(xS) =
1

n

n∑
i=1

g(xS,xCi
) (1)

where C denotes predictors other than those in S, {xC1 ,xC2 , ...,xCn} are the values of

xC occurring in the training set of n observations, and g() gives the predictions from the

machine learning model. For one or two variables, the partial dependence functions fS(xS)

are plotted (a so-called PDP) to display the marginal fits.

Friedman’s H-statistic or H-index (Friedman and Popescu, 2008) is a VInt measure

created from the partial dependence by comparing the partial dependence for a pair of

variables to their marginal effects. Squaring and scaling gives a value in the range (0, 1):

H2
jk =

∑n
i=1[fjk(xij, xik)− fj(xij)− fk(xik)]2∑n

i=1 f
2
jk(xij, xik)

(2)

where fj(xj) and fk(xk) are the partial dependence functions of the single variables and

fjk(xj, xk) is the two-way partial dependence function of both variables, where all partial

dependence functions are mean-centered.

The H-statistic requires O(n2) predicts for each pair of variables, and so can be slow to

evaluate. Sampling from the training set will reduce the time, though at a cost of increasing

the variance of the partial dependence estimates and the H-statistic.

When the denominator in Equation 2 is small, the partial dependence function for

variables j and k is flat, and small fluctuations in the numerator can yield spuriously

high H-values. Biased partial dependence curves will also lead to inflated H. This occurs

in some machine learning approaches which exhibit regression to the mean in their one-

way partial dependencies. Furthermore biased partial dependence curves are a particular

problem in the presence of correlated predictors. These issues with the H-statistic seem to

be not widely known by practitioners (though see Apley and Zhu, 2020), and we provide a

short illustration of these problems in the appendix.
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In our visualizations throughout this paper, we use the square-root of the average un-

normalized (numerator only) version of Friedman’s H2 for calculating pairwise interactions:

Hjk =

√√√√ 1

n

n∑
i=1

[fjk(xij, xik)− fj(xij)− fk(xik)]2 (3)

This reduces the identification of spurious interactions and provides results that are on the

same scale as the response (for regression). It does not, however, remove the possibility

that some large H-values arise from correlated predictor variables.

We follow the convention of Hastie et al. (2009) by using the logit scale for both the

partial dependence and in calculation of the H-statistic when fitting a classification model

with a binary response. If the response is multi-categorical a near-logit is used, defined as:

gk(x) = log[pk(x)]− 1

K

K∑
k=1

log[pk(x)] (4)

where k = 1, 2, ..., K and pk(x) is the predicted probability of the k-th class. PDPs of gk(x)

from Equation 4 can reveal the dependence of the log-odds for the k-th class on different

subsets of the input variables.

Alternatives to the H-statistic have been suggested, which could be used in place of the

the H-statistic in our visualizations. Hooker (2004) uses a functional ANOVA construction

to decompose the prediction function into variable interactions and main effects. Green-

well et al. (2018) suggested a partial dependence-based feature interaction which uses the

variance of the partial dependence function as a measure of importance of one variable

conditional on different fixed points of another.

2.3 Heatmap visualization with seriation

Traditionally, variable importance and interaction are displayed separately, with variable

interaction itself spread over multiple plots, one for each variable. We direct the reader

to Chapter 8 of Molnar (2019) for examples. We propose a new heatmap display showing

VImp on the diagonal and VInt on the upper and lower diagonals. The benefit of such a

display is that one can see which variables are important as individual predictors and at

the same time see which pairs of variables jointly impact on the response. It also facilitates
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easy comparison of multiple model fits, which is far less straightforward with separate VImp

and VInt displays.

We illustrate the heatmap using a random forest fit to a college applications data set

(American Statistical Association, 1995), with Enroll (i.e., the number of new students

enrolled) as the response. The data was gathered from 777 colleges across the U.S. and

contains 18 variables ranging from economic factors (such as room and board and book

costs) to the number of applications received and accepted. As some of the variables are

skewed they are log-transformed prior to building the model. The data was split 70-30 into

training and test sets. A value of R2 = 0.96 was obtained for the test set. All plots were

made from the training set. See the supplementary materials for a description of the data

and transformations.

Figure 1 shows our heatmap with two different orderings. Figure 1(a) has the vari-
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(b) Leaf sort algorithm

Figure 1: Heatmap from random forest of college application data. In (a) variables are in original

order. In (b), the heatmap is re-ordered using leaf sort. In (b) we can see three important and

mutually interacting variables, F.Undergrad, Accept and Apps.

ables in their original order, while Figure 1(b) uses the leaf-sorting algorithm (described

below). The purple color scale used on the off-diagonal shows the Friedman’s H-statistic

values (un-normalized) with deeper purple indicating a higher VInt. Similarly the green

color scale on the diagonal represents the level of VImp, here measured using an embedded
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approach supplied by the random forest (in this case, the increase in node purity). We

use colorblind-friendly, single-hued sequential color palettes from Zeileis et al. (2020) going

from low to high luminance in both cases, designed to draw attention to high VInt/VImp

variables. From the improved ordering in Figure 1(b), there are three clearly important and

potentially interacting variables, F.Undergrad (the number of full-time undergraduate stu-

dents), Accept (the number of applicants accepted), and Apps (the number of applications

received), with F.Undergrad having the largest VImp when predicting Enroll.

Many authors have investigated the benefits of re-ordering (also known as seriation)

for graphical displays, see for example Hurley (2004), Hahsler et al. (2008) and Earle and

Hurley (2015). The benefits of reordering the variables in Figure 1(b) are clear. The

right-hand plot lends itself to easy interpretation whereas the left-hand plot does not.

Most seriation algorithms start with a matrix of dissimilarities or similarities between

objects and produce an ordering where similar objects are nearby in the sequence. Our

goal here is a little different. As well as placing mutually interacting variables nearby in

the sequence, we would like to bring important variables or pairs of variables to the start

of the sequence so that the most relevant portion of the heatmap will be in the top-left

corner.

We use the leaf sort seriation algorithm from Earle and Hurley (2015). This uses hier-

archical clustering followed by a sorting step. Let vi be a measure of variable importance

and sij be the interaction measure between variables i and j. Treating the matrix of inter-

actions as a similarity matrix, we first construct a hierarchical clustering. This produces

a dendrogram, resulting in a variable ordering where high-interacting variables are nearby.

Using this ordering in a heatmap generally brings high interactions close to the diagonal,

but ignores our goal of placing important variables early in the sequence. For the sorting

step we calculate for each variable a combined measure of its importance and contribution

to the interactions, defining these scores as:

wi = λ1vi + λ2 max
j 6=i

sij.

Here λ1 and λ2 are scaling parameters to account for the fact that variable importance and

interaction are not measured in the same units. Reasonable choices of λ1 and λ2 rescale
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importance and interaction to, say, unit range or unit standard deviation. We use unit range

by default. As there are many possible dendrogram orderings consistent with a hierarchical

clustering of the matrix of interactions, the sorting step re-orders the dendrogram leaves

so that the weights wi are generally decreasing.

Sorting the variables in this way will achieve our goals of placing high-interacting pairs

of variables nearby in the sequence, while simultaneously pulling predictors with high im-

portance and interaction to the top-left of the heatmap, leaving less relevant predictors

to the bottom-right. Setting λ2 = 0 or λ1 = 0 produces plots which sort by descending

VImp or max VInt respectively. For all future heatmap plots, we use the sorting strategy

discussed above to optimize the arrangement of variables. After using seriation to re-order

the heatmap variables, filtering can be applied to limit the display to the most important

or interacting variables; this strategy is especially useful when there are large numbers of

predictors.

The heatmap display can be further used to compare different model fits. In Figure

2 we compare the random forest to a k-nearest neighbours (kNN) fit. In the left panel
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(a) kNN fit
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(b) Random forest fit

Figure 2: A comparison of a kNN and random forest fit on the college application data. Both fits

identify F.Undergrad as the most important variable as well as having similar mutual interactions

between F.Undergrad, Accept and Apps. The kNN fit identifies many more moderate interactions

between variables, especially concerning the variable Private
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of Figure 2 we have a heatmap of a kNN fit (with k = 7 neighbours considered), while

the right panel shows the random forest heatmap. To make a direct comparison of the

heatmaps, we swap the embedded VImp measures that are available from a random forest

fit and instead measure importance with an agnostic permutation approach that allows

direct comparison of both the kNN and random forest models. Furthermore, we set both

heatmaps to use the same color scale for the VImp and VInt values.

We see in Figure 2 that both the random forest and kNN fit identify F.Undergrad

as the most important variable for predicting the number of students enrolled. The top

three variables are identical in both models, though the VImp values are much smaller

in general across the kNN fit (e.g. the measured VImp for F.Undergrad for the kNN and

random forest fits are 0.16 and 0.6 respectively). Both fits show mutual interactions between

F.Undergrad, Accept and Apps. However, the kNN fit also suggests a moderate interaction

between Private (i.e., whether the university was public or private) and F.Undergrad, which

appears somewhat lower in the random forest fit. As Private has a relatively low VImp

in both model fits, a simple VImp screening could miss its relevance to the fit. We note

though, that this kNN-random forest comparison is for the sake of illustration only, as in

this instance the kNN fits poorly by comparison with the random forest, having a test

mean square error (MSE) over three times bigger.

2.4 Network visualization

As our second offering for displaying VIVI, we propose a network plot that shares similar

benefits to the heatmap display but differs from it by giving a visual representation of the

magnitude of the importance and interaction values not only via color but also by the size

of the nodes and edges in a graph. In this plot, each variable is represented by a node

and each pairwise interaction is represented by a connecting edge. See Figure 3(a) for an

example. The color scales were chosen to match that used in the heatmap, with node

size and color luminance increasing with variable importance. Similarly, edge width and

color reflects the strength of the VInt. By default we choose a radial layout to display the

variables (although this can be changed according to preference) and use the same seriation
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Figure 3: Network plot of a random forest fit on the college application data. Three mutually

interacting and important variables can be seen, namely F.Undergrad, Accept and Apps. In (a)

all of the variables are displayed. In (b) the network plot has been filtered to display pairs of

variables with high VInt and clustered to highlight variables with mutually high VInt.

of variables as the heatmap, with the variables of high importance and high interaction

strength placed in a clock-wise arrangement starting at the top. The benefit of such a

display is that one can quickly decipher the magnitude of the importance and interactions

of the variables as well as seeing which variables both individually and jointly impact on

the response.

In Figure 3(a) we again use the random forest fit of the college application data, using

the same VImp and VInt measures as in Figure 1. In the network plot the strong mutual

interactions between F.Undergrad, Accept and Apps and are represented by thick, intensely

purple lines. F.Undergrad is identified as the most important single predictor and is repre-

sented by a large, intensely green node. For settings with large number of predictors, it will

be useful to filter the display to focus on high VIVI variables. An additional step groups or

clusters the variables according to VImp or VInt values. For example, Figure 3(b) shows

a network plot, filtered to display pairs of variables with high VInt and clustered to show

groups with mutually similar VInt. Here it is clear that the cluster colored pink contains

the variables with the largest VInt scores. In this example we use hierarchical clustering,

but in our implementation, the graph clustering methods provided by the package igraph
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(Csardi and Nepusz, 2006) are directly available.

3 Visualizing partial dependence and individual con-

ditional expectation

We introduce new variants of partial dependence and individual conditional expectation

plots in two different layouts. With these plots, we can further investigate predictor ef-

fects singly and pairwise, especially for those predictors deemed important in our VIVI

plots. Additionally, our new plots combine displays of variable pairs, thus highlighting the

presence of strong correlations where VInt measures may mislead. Conventionally, partial

dependence plots are shown singly or in linear layouts, see Section 8.1 of Molnar (2019)

for examples. By comparison, our new displays are more compact, richer, and benefit from

seriation.

3.1 Individual conditional expectation curves

Goldstein et al. (2015) described individual conditional expectation (ICE) curves, which are

closely related to partial dependence plots (PDPs). While a PDP shows the average partial

relationship between the response and one or two features S, ICE plots display a collection

of curves, each showing the estimated relationship between the response and the feature S,

at an observed value of other features. Recalling Equation (1), the ICE curves consist of

g(xS,xCi
) versus xS, i = 1, 2, . . . , n, while the PDP curve is their average fS(xS). If the

ICE curves follow a similar pattern then the PDP is a useful overall summary, but if the

pattern varies, then the feature effect is not homogeneous.

3.2 Generalized partial dependence pairs plot with ICE curves

We propose a generalized pairs partial dependence plot (GPDP) with one-way partial

dependence and ICE curves with a superimposed partial dependence curve on the diagonal,

the bivariate partial dependence on the upper diagonal and scatter plots of raw variable
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values on the lower diagonal, all of which are colored by the predicted values ŷ. Figure 4

provides an example. With the generalized pairs plot, an analyst can quickly identify which

F.Undergrad Accept Apps Private P.Undergrad PhD S.F.Ratio

F
.U

ndergrad
A

ccept
A

pps
P

rivate
P

.U
ndergrad

P
hD

S
.F

.R
atio

5 6 7 8 9 10 5 6 7 8 9 6 8 10 No Yes 0.0 2.5 5.0 7.5 25 50 75 100 10 20 30 40

5

6

7

8

5

6

7

8

9

6

8

10

No

Yes

0.0

2.5

5.0

7.5

25

50

75

100

10

20

30

40

5

6

7

8
y−hat

Figure 4: GPDP of a random forest fit on the college data showing the seven most influential

variables. From the changing one and two-way partial dependence, we can see that F.Undergrad,

Accept and Apps have some impact on the response. However, as they are highly correlated and

have similar increasing marginal effects, the potential interactions identified by the H-statistic

are likely to be spurious.

variables singly or jointly impact on the fit. We use a diverging palette so deviations from

the average response are emphasized. Here, high values of ŷ are shown in dark red and low

values are shown in dark blue. Mid-range values are shown in yellow. To avoid interpreting

the PDPs where there are no data (and hence potentially spurious H-statistics), we mask

out extrapolated areas by plotting the convex hull. For maximum resolution of the bivariate

PDPs, the range of the collection of PDP surfaces dictates the limits of the color map. As

predictions for individual observations and ice curves are likely to fall beyond these limits,

colors are assigned using the closest value in the color map limits.
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The ordering of the variables matches that of our heatmap and network plots. The

GPDP differs from the previous plots by showing us the distribution of the explanatory

variables (lower-diagonal), the exact nature of any linear/non-linear effects through the

use of ICE curves (diagonal), and the average behaviour of the interactions through the

use of two-way partial dependence (upper-diagonals). For the ICE curves we have limited

the graphic to display a maximum of 30 randomly sampled curves by default, to allow

individual ICE curves to be seen. As with the other visualizations, our GPDP can handle

both categorical responses and predictors.

Figure 4 shows an example of a GPDP of the college applications data. In the in-

terest of space, we pre-filter this plot to show the seven most influential variables. The

bivariate PDPs show the response surface over the convex hull of each variable pair. The

lower diagonal plots indicate that F.Undergrad:Accept, F.Undergrad:Apps and especially

Accept:Apps are highly correlated with similar increasing marginal effects on the diagonal,

suggesting that the the high H-values between these variables are likely to be spurious.

This is verified by the bivariate linear PDPs for these variables. As Private is a factor

with two levels (i.e., yes or no), the partial dependence for each factor level is shown in the

upper-diagonal (with yes in red and no in blue). The remaining variables would appear to

have little effect either singly or jointly on the response. This can be seen from the flat

one-way PDP and ICE curves on the diagonal and the flat two-way PDPs.

3.3 Partial dependence zenplot

Our final display uses the methods of Hofert and Oldford (2020) to show selected panels

of the all-pairs PDP in a space-saving layout, which we call a zen-partial dependence plot

(ZPDP). Zenplots (zigzag expanded navigation plots) were designed for showing pairwise

plots of high-dimensional data in a zigzag layout. The motivation for zenplots is that they

focus on interesting 2D displays, and they permit examination of high-dimensional data.

Indeed, Hofert and Oldford (2018) present an example where they successfully explore

pairwise dependence of 465 variables via 164 zenplots. Here we propose to adapt zenplots

for bivariate partial dependence plots.
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To describe the construction, consider a network plot showing VImp/VInt such as that

in Figure 3(a). Then delete edges with VInt below a threshold, leaving a graph such as that

in Figure 3(b). We wish to build partial dependence plots showing pairs of variables with

high VInt, that is, visiting each of the edges in our thresholded graph. For a connected

graph, the greedy Eulerian path algorithm of Hurley and Oldford (2011) visits each edge

at least once, starting from the highest weighted edge and moving through edges giving

preference to the highest-weight available edge. If the graph is not even, some edges may

be visited more than once, or additional edges are visited. If the graph is not connected,

we form sequences for the connected sub-graphs, which are optionally joined into a single

sequence.

Zenplots use the zigzag display algorithm of Hofert and Oldford (2020) and allow for

the display of high-dimensional data by alternating plot axes in a zigzag-like pattern where

adjacent axes share the same variable. We adapt this concept replacing bivariate data

plots with bivariate partial dependence plots. As interpretation issues may arise when the

distribution of some of the variables is highly skewed, we display a rug plot on each axis to

show the distribution of the data. For ease of viewing, the rug plots are a single color and

use alpha blending to highlight the distribution. As with our GPDP, there is an option

to mask areas where the partial dependence has been extrapolated. The resulting plot

displays the most important interacting variables in as small a space as is possible, vastly

reducing the number of plots that would be required for interpretation compared with a

default matrix scatter plot of PDPs.

In Figure 5, we show a ZPDP for the random forest fit to the college applications data.

The ZPDP shows the bivariate PDPs corresponding to each of the edges of Figure 3b. The

sequence of plots is obtained from an Eulerian visiting the edges starting with the highest-

weight edge, here that is between F.Undergrad and Accept, and following available edges

in order of preference by weight thereafter. The resulting Eulerian is F.Undergrad, Accept,

Apps, F.Undergrad, Private, Accept, P.Undergrad. The plots shown correspond to a subset

of those in Figure 4, limited to the more interesting high-interaction pairs. This more

compact display helps focus the reader’s attention where it is needed, especially as the plots
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Figure 5: ZPDP of a random forest fit on the college data. We can see that the predicted value

for the number of students enrolled increases with each of the variables.

are approximately ordered by decreasing H-index. The variables Private and P.Undergrad

show little evidence of marginal importance, and notwithstanding the relatively large H-

values, there is not much evidence of interaction with other predictors.

4 Case study: cervical cancer risk classification

Cervical cancer remains one of the most prevalent forms of cancer in women globally,

ranking fourth in the global cancer incidence in women (Bray et al., 2018). The link between

cervical cancer and sexually transmitted diseases (STDs) has been well established. The

long-term use of hormonal oral contraceptives is associated with increased risk (Smith et al.,

2003). Furthermore, having multiple children has been shown to increase risk (Lukac et al.,

2018), particularly in women previously infected with HPV.

Here we examine and create visualizations for data concerning cervical cancer risk fac-

tors (Fernandes et al., 2017). Based on the previous studies, we would expect our visualiza-

tions to align with prior identification of important variables, with the addition of gaining

new information about how the variables interact. The data is comprised of historical
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medical records (such as a patient’s STD history, oral contraceptive or intrauterine device

[IUD] use) and personal information (such as age and sexual activity). Due to the personal

nature of the questions asked for the collection of the data, several patients decided not

to answer some of the questions, particularly those concerning STDs. The data has been

previously studied (for example see Alsmariy et al., 2020). The full dataset contains 36

variables with 858 observations and uses Biopsy (Healthy or Cancer) as the response.

For this case study, we use a subset of the variables (see supplementary materials for a

listing). Preliminary exploration of the data shows that many variables are highly skewed

and contain zero values; in this case we use a log(x+ 1) transformation. The data is split

70-30 into training and test sets. We fit a classification gradient boosting machine (GBM)

model (Friedman, 2000) to the training data, with Biopsy as the response. The accuracy

on the test set was measured to be 0.93, and the area under the curve (AUC) was 0.73.

All plots were made using the training data, with all PDPs and the H-statistic measured

on the logit scale.

Figure 6 displays a heatmap of the GBM fit on the cervical cancer risk data, using
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Figure 6: Heatmap of a GBM fit on the cervical cancer data. The first seven variables have the

highest VIVI scores. Age and No preg have the strongest interaction.

a permutation VImp method. Reading from the top-left, the first seven variables have

the highest VIVI scores. Overall, Age has the highest importance followed closely by

Horm Cont yrs (the number of years a patient has taken hormonal contraceptives). This is

in agreement with the studies mentioned above. Age also shares the strongest interaction
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with No preg (number of pregnancies), which has a medium Vimp but is highly important

in terms of its interaction. We can see multiple interactions throughout the top seven

variables. Of note is the interaction between STDs No (number of STDs a patient has

previously had) and No sex par (number of sexual partners). Both of these variables share

a strong interaction but have low VImps and they may have been mistakenly eliminated

from a model were VImp scores to be used as the sole variable selection metric.

We further explore the impact of the top five variables from Figure 6 on cancer clas-
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Figure 7: GPDP of a GBM fit on the cervical cancer data. The presence of the STD condylomato-

sis (STDS condy in turquoise) increases the risk of cervical cancer. Risk increases substantially

at higher ages and with prolonged use of hormonal contraceptives.

sification in the GPDP plot of Figure 7. To compare response groups, the ICE plots on

the diagonal show 25 instances sampled from each of the Cancer and Health groups. The

ICE curves are colored according to the predicted log-odds of cancer for that instance.

As there is only one red curve, the predicted model accords most observations low cancer

probabilities, even for those known to have cancer. The solid black lines on the diagonal
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of Figure 7 show single variable PDPs. The PDP curve for Age, the single most important

predictor, has a mostly decreasing log-odds trend up to an age of 43 (≈ 3.75 on the log

scale), with a steep incline thereafter. But we can see from the Age scatterplots there

are few cases with ages beyond 43, so the pattern in this area is not supported by much

data. The pattern for the Horm Cont yrs PDP is similar to that for Age, where log-odds

of cervical cancer increases rapidly beyond eight years. In this case though, there are quite

a few observations in this region supporting this finding.

According to Figure 6, the predictors No preg and Age have the strongest interaction.

The bivariate PDP plot for No preg:Age indicates the form of this interaction. A high

number of pregnancies is associated with low cancer probability for middle age groups, but

is associated with a higher cancer probability for older and, interestingly, younger patients.

Note that in the plots with one numeric and one categorical variable, such as the plot for

STD condy (STDs: condylomatosis) and Age, the numeric variable is always drawn on the

x-axis, notwithstanding the label is on the y-axis. This is to allow the plot to be more easily

read. In this plot, the bivariate PDP is the same as two PDPs for each level of STDs condy

(where the green curve is for STDs condy = 1). Although this pair has a relatively high

VInt score (as seen in Figure 6), there does not appear to be an interaction present in the

bivariate PDP, as the difference between the two curves does not vary with age.

To focus just on predictors with high pairwise interaction scores, we turn to a network

plot. Figure 8 displays a network plot of the GBM fit to the cervical cancer risk data, filtered

to show pairs of variables with a H-index greater than 0.08 (with the cutoff chosen after

inspection of the histogram of H values). The selected variables include the five variables

appearing in Figure 7, and three additional variables, namely No sex par, STDs No, and

IUD yrs (number of years with an intrauterine device), with eight relevant interactions

between them. This display has some benefits over the heatmap display of Figure 6.

Firstly, it focuses directly on pairs of variables with high interaction, particularly with the

choice of network layout. Secondly, in the heatmap plot, even with seriation, some high-

interaction pairs of variables may not be positioned nearby which detracts from readability.

For example in Figure 6, associating the relevant variables with the strong interaction for
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Figure 8: Network graph of a GBM fit on the cervical cancer data, filtered to show pairs of

variables with H-index greater than 0.08.

(First sex inter, STDS No) requires considerable effort from the reader. However, this

strong interaction is immediately obvious in Figure 8.

To explore these interacting variables further, we use a ZPDP in Figure 9 to show the

bivariate PDPS for the eight interactions. The Eulerian path starts with the pair of vari-

ables with the highest H-index (here No preg:Age), and from there to Age:STDs cond y,

ending up at No preg:IUD yrs. An additional plot is added corresponding to an edge be-

tween Horm Cont yrs and IUD yrs to complete the Eulerian. (In this example, it would be

possible to construct a ZPDP based on an Eulerian visiting each edge of the graph in Fig-

ure 8 exactly once, but this Eulerian ignores edge weights.) The STDs No:No sex par plot

(third row, second column) is a flat surface with no evidence of interaction, despite these

variables having a moderate H-index. Interestingly, in the No preg:IUD yrs plot (third

row, first column), the probability of developing cervical cancer is increasing with IUD yrs,

with a steeper gradient for moderately high No preg. Further investigation is needed to

determine the nature of this effect.

To summarize, we have used our visualizations to identify and examine some clear

risk factors associated with developing cervical cancer. Our novel approach allowed us to

examine specific pairs of variables that interact and through our use of graphs and PDPs,

we can examine how each variable affects the model’s predictions. Specifically, the age of

a patient and the number of years of hormonal contraceptive use seem to be important
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Figure 9: ZPDP of a GBM fit on the cervical cancer risk data. High cancer probability occurs

with high number of pregnancies and high age. The color scale is the same as that of Figure 7.

risk factors, agreeing with previous studies. From Figure 7, the women who took hormonal

contraceptives for eight or more years appear to have a higher risk cervical cancer, which

is in agreement with the findings of Smith et al. (2003). Surprisingly, as seen in Figure 6,

Dx.HPV (i.e., whether the patient has had a previous diagnosis of HPV) was ranked to have

middling importance, despite the known link between HPV and cervical cancer. Neither

did we see evidence of an interaction between No preg and Dx.HPV, which contrasts with

Lukac et al. (2018). These differences may be due to the low frequency of positive cases in

the data.

5 Discussion

We have presented innovative and informative methods to visualize the importance and

interactions of variables simultaneously from a model. The seriated heatmap of Section 2.3

and the network plot of Section 2.4 are effective in determining which variables have the

most impact on the response in a model fit. We view VIVI measures displayed in heatmap
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and network plots as a starting point for further detailed exploration of the nature of

variable effects and interactions in the GPDP and ZPDP. The ZPDP construction is a

novel application of the recently proposed zenplots of Hofert and Oldford (2020), which

should prove particularly useful to focus exploration on high-VIVI subsets of variables.

Our methods are intuitive, flexible and easily customisable. Built-in or model-agnostic

variable importance measures may be used in our heatmap and network displays. In our

work to date, we use the model-agnostic H-statistic. Model-agnostic measures are particu-

larly useful when comparing two or more fits. The heatmap and network displays will also

be useful for comparing different VIVI measures for the same fit.

As calculation of the VIVI matrix and our visualizations are available for any subset of

the data, stratified versions or facetted displays will give insight into higher-order predictor

interactions. A drawback to the H-statistic is calculation speed, which is highly model

dependent, though sampling and parallel calculation offer useful speed-ups. For example,

the 14 × 14 H-matrix for the GBM fit in Figure 6 computed on 30 randomly selected

observations took approximately 16 seconds on a MacBook Pro 2.3 GHz Dual-Core Intel

Core i5 with 8GB of RAM. Calculation for the 17-predictor random forest fit in Figure 1 is

much slower, taking approximately 79 seconds, even though here we used just 20 randomly

selected observations. A second drawback we have identified is that high H values can

occur in settings where there is no feature interaction, especially in the presence of high

variable correlation. The presence and nature of interactions can be further verified in the

bivariate partial dependence plot, thus avoiding misleading conclusions.

A bivariate importance measure, perhaps obtained by permuting pairs of variables,

could be used in place of theH-statistic in the heatmap and network visualizations. It would

also be interesting to explore the interaction measures of Hooker (2004) and Greenwell et al.

(2018) in our visualizations, and whether these measures avoid the issues identified with

the use of H.

A number of variants of the GPDP and ZPDP could be investigated in future work.

One possibility for the bivariate PDP, is to subtract the two marginals plotting fjk−fj−fk,

which corresponds directly to the H-statistic. Alternatively, accumulated local effects
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(ALE) functions (Apley and Zhu, 2020) could be used in place of PDPs in our matrix

layouts. ALE functions were constructed with the goal of counteracting the bias issues of

partial dependence functions. Another option might be to replace the partial dependence

f in Equation 3 with the corresponding ALE function, giving a new interaction measure.

APPENDIX

We explore some limitations of the H-statistic using a simulated dataset. We demonstrate

the benefits of the un-normalized version of H, and show how correlated variables can

result in spuriously high interaction measures.

Using the Friedman benchmark equation (Friedman, 1991),

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε (5)

where xj ∼ U(0, 1), j = 1, 2, . . . , 10; ε ∼ N(0, 1)

we simulate 1,000 observations and fit a random forest. There are five important variables

with an interaction between x1 and x2, and five additional predictors x6, x7, . . . x10 unrelated

to the response.

In Figure 10(a) and (b) we compare the normalized and un-normalized versions of the

H-statistic for the simulated data. Colour legends are not useful here and are omitted. In

all cases, the x1:x2 interaction is correctly identified. However, in (a) there are numerous

spurious strong interactions among the noise variables. In (b) using un-normalized H these

spurious strong interactions disappear. The culprit here is the denominator in Equation 2,

which for variables x6, x7, . . . x10 will be close to zero, thus artificially inflating H. This is

the rationale behind our use of the un-normalized H-statistic in our examples throughout.

A more subtle cause of spuriously inflated H is due to bias in the partial dependence

curve. This is a particular problem in the presence of correlated predictor variables (for

example, see Apley and Zhu, 2020). To demonstrate this, we replace x5 with 0.3x5+0.7x4 in

Equation 5 thus introducing a strong correlation (≈ 0.92) between x4 and x5. The resulting

VIVI heatmap of the random forest fit in Figure 10(c) shows a moderate x4:x5 interaction

which is spurious. Even in the absence of correlation, bias can occur if the fit exhibits
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(b) Un-normalized H
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(c) Correlated variables.

Figure 10: Comparison of the normalized and un-normalized H-statistic and the effect of including

correlated variables for a random forest model. In (a) multiple spurious interactions are detected

when using the normalized H-statistic. In (b) the spurious interactions have mostly disappeared

when using the un-normalized version. In (c) (un-normalized H) a moderate spurious interaction

between the correlated variables x4 and x5 is detected .

regression to the mean. For example, this occurs with tree-based fits such as a random

forest, where predictions cannot lie outside the range of training set responses. This bias

is evident in Figure 10(b) and (c) as the light purple squares in the top-left section of the

heatmaps.

SUPPLEMENTARY MATERIAL

Datasets description in datasets.pdf

College Code for examples of Section 2 and 3 in college.Rmd

Cervical Code for examples of Section 4 in cervical.Rmd

hstat Code for example of Appendix in hstat.Rmd
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